A multi-objective algorithm for task scheduling and resource allocation in cloud-based disassembly

被引:87
|
作者
Jiang, Hui [1 ]
Yi, Jianjun [1 ]
Chen, Shaoli [1 ]
Zhu, Xiaomin [1 ]
机构
[1] East China Univ Sci & Technol, Dept Mech Engn, 130 Meilong Rd, Shanghai 200237, Peoples R China
关键词
Cloud-based disassembly; Multi-objective genetic algorithm; Task scheduling and resource allocation; Cloud manufacturing; LINE BALANCING PROBLEM; GENETIC ALGORITHM; SEARCH ALGORITHM; OPTIMIZATION; PRODUCT; DESIGN; APPROXIMATION; UNCERTAINTY; CELL;
D O I
10.1016/j.jmsy.2016.09.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Some manufacturers outsource their disassembly tasks to professional factories, each factory of them has specialized in its disassembly ability. Different disassembly facilities are usually combined to execute disassembly tasks. This study proposes the cloud-based disassembly that abstracts ability of the disassembly factory as the disassembly resource, the disassembly resource is then able to be allocated to execute disassembly tasks. Based on this concept, the cloud-based disassembly system is proposed, which provides the disassembly service according to the user requirement. The disassembly service is the execution plan for disassembly tasks, which is the result of scheduling disassembly tasks and allocating disassembly resources. To formally describe the disassembly service, this paper builds a mathematical model that considers the uncertainty nature of the disassembly process and precedence relationships of disassembly tasks. Two objectives including minimizing the expected total makespan and minimizing the expected total cost of the disassembly service are also discussed. The mathematical model is NP complete, a multi-objective genetic algorithm based on non-dominated sorting genetic algorithm II is designed to address the problem. Computation results show that the proposed algorithm performs well, the algorithm generates a set of Pareto optimal solutions. The user can choose a preferred disassembly service among Pareto optimal solutions. (C) 2016 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:239 / 255
页数:17
相关论文
共 50 条
  • [11] An effective multi-objective task scheduling and resource optimization in cloud environment using hybridized metaheuristic algorithm
    Kalimuthu, Rajkumar
    Thomas, Brindha
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (04) : 4051 - 4063
  • [12] Multi-objective Task Scheduling Optimization in Cloud Computing based on Genetic Algorithm and Differential Evolution Algorithm
    Li, Yuqing
    Wang, Shichuan
    Hong, Xin
    Li, Yongzhi
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 4489 - 4494
  • [13] Evolutionary algorithm-based multi-objective task scheduling optimization model in cloud environments
    Fahimeh Ramezani
    Jie Lu
    Javid Taheri
    Farookh Khadeer Hussain
    World Wide Web, 2015, 18 : 1737 - 1757
  • [14] Multi-objective Task Scheduling Optimization Based on Improved Bat Algorithm in Cloud Computing Environment
    Yu, Dakun
    Xu, Zhongwei
    Mei, Meng
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) : 1091 - 1100
  • [15] Evolutionary algorithm-based multi-objective task scheduling optimization model in cloud environments
    Ramezani, Fahimeh
    Lu, Jie
    Taheri, Javid
    Hussain, Farookh Khadeer
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2015, 18 (06): : 1737 - 1757
  • [16] Multi-objective task scheduling in cloud computing environment by hybridized bat algorithm
    Bezdan, Timea
    Zivkovic, Miodrag
    Bacanin, Nebojsa
    Strumberger, Ivana
    Tuba, Eva
    Tuba, Milan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (01) : 411 - 423
  • [17] A new hybrid multi-objective optimization algorithm for task scheduling in cloud systems
    Malti, Arslan Nedhir
    Hakem, Mourad
    Benmammar, Badr
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (03): : 2525 - 2548
  • [18] Multi-Objective Task Scheduling in Cloud Computing Using an Imperialist Competitive Algorithm
    Habibi, Majid
    Navimipour, Nima Jafari
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2016, 7 (05) : 289 - 293
  • [19] Multi-objective task scheduling in cloud computing environment by hybridized bat algorithm
    Bezdan, Timea
    Zivkovic, Miodrag
    Bacanin, Nebojsa
    Strumberger, Ivana
    Tuba, Eva
    Tuba, Milan
    Journal of Intelligent and Fuzzy Systems, 2022, 42 (01): : 411 - 423
  • [20] Multi-objective hybrid genetic algorithm for task scheduling problem in cloud computing
    Poria Pirozmand
    Ali Asghar Rahmani Hosseinabadi
    Maedeh Farrokhzad
    Mehdi Sadeghilalimi
    Seyedsaeid Mirkamali
    Adam Slowik
    Neural Computing and Applications, 2021, 33 : 13075 - 13088