Multisensor Fusion Time-Frequency Analysis of Thruster Blade Fault Diagnosis Based on Deep Learning

被引:12
|
作者
Tsai, Chia-Ming [1 ]
Wang, Chiao-Sheng [1 ]
Chung, Yu-Jen [2 ]
Sun, Yung-Da [3 ]
Perng, Jau-Woei [1 ,4 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Mech & Electromech Engn, Kaohsiung 804, Taiwan
[2] ROC Naval Acad, Kaohsiung 804, Taiwan
[3] Naval Meteorol & Oceanog Off ROC, Kaohsiung 804, Taiwan
[4] Kaohsiung Med Univ, Dept Healthcare Adm & Med Informat, Kaohsiung 807, Taiwan
关键词
Attitude control; Fault diagnosis; Sensors; Blades; Time-frequency analysis; Propellers; Sonar equipment; Convolutional neural network (CNN); deep learning (DL); propeller fault diagnosis; PARTICLE FILTER; SOUND SIGNALS; BEARING; MACHINE;
D O I
10.1109/JSEN.2022.3204709
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the rapid development of marine robots, detecting abnormalities in propulsion systems is important during sailing as the unperceived damage of thrusters and propellers can cause substantial losses. In this study, different fault conditions of blades, including healthy, fully broken, half-broken, and simulated biofouling, are discussed. Current and sound signals are collected by a Hall element and hydrophone, respectively, to diagnose the propeller under different rotating speeds. The experiments include an ideal condition (swimming pool) and a noisy condition (lake). The raw data of time-domain signals are transformed into a time-frequency domain and shown as an image. A modified convolutional neural network (CNN) based on merging two signals is proposed to classify the faults. To compare the performance of models, the networks use single and multiple signals as input. The results demonstrate that the proposed multiple signals method achieves the best propeller fault diagnosis results, particularly when two signals are first trained separately and then merge at the end (99.94% in a swimming pool and 99.06% in a lake). Finally, the model was applied to Nvidia Jetson TX2 to verify the computing performance of an embedded system.
引用
收藏
页码:19761 / 19771
页数:11
相关论文
共 50 条
  • [31] GNSS Interference Signal Recognition Based on Deep Learning and Fusion Time-Frequency Features
    Guo, Chengjun
    Tu, Weijuan
    PROCEEDINGS OF THE 34TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS+ 2021), 2021, : 855 - 863
  • [32] Time-frequency fusion for enhancement of deep learning-based physical layer identification
    Zeng, Shuiguang
    Chen, Yin
    Li, Xufei
    Zhu, Jinxiao
    Shen, Yulong
    Shiratori, Norio
    AD HOC NETWORKS, 2023, 142
  • [33] Application of Time-Frequency Analysis in Rotating Machinery Fault Diagnosis
    Bai, Yihao
    Cheng, Weidong
    Wen, Weigang
    Liu, Yang
    SHOCK AND VIBRATION, 2023, 2023
  • [34] Time-frequency Signal Analysis in Machinery Fault Diagnosis: Review
    Hui, K. H.
    Hee, Lim Meng
    Leong, M. Salman
    Abdelrhman, Ahmed M.
    MATERIALS, INDUSTRIAL, AND MANUFACTURING ENGINEERING RESEARCH ADVANCES 1.1, 2014, 845 : 41 - 45
  • [35] A Concentrated Time-Frequency Analysis Tool for Bearing Fault Diagnosis
    Yu, Gang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (02) : 371 - 381
  • [36] Mechanical fault diagnosis based on a new time-frequency distribution
    Wang, Xinqing
    Ma, Ruiheng
    Wang, Yaohua
    Yan, Jun
    Cai, Ligen
    Zeng, Yonghua
    Wang, Yang
    Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2003, 39 (07): : 150 - 153
  • [37] Study on the fault diagnosis of gearboxes based on time-frequency distribution
    Ren, GQ
    Li, GZ
    Gao, JW
    ICEMI'2003: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOLS 1-3, 2003, : 1655 - 1658
  • [38] Hierarchical Deep Learning for Bearing Fault Detection in BLDC Motors Using Time-Frequency Analysis
    Ali, Ahmed K.
    Rafa Abed, Wathiq
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2024, 2024
  • [39] Fault Detection and Diagnosis of Bearing Based on Local Wave Time-Frequency Feature Analysis
    Xiao, Qijun
    Luo, Zhonghui
    Wu, Junlan
    2015 11TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2015, : 808 - 812
  • [40] Improving bearing fault diagnosis method based on the fusion of time-frequency diagram and a novel vision transformer
    Wang, Jingyuan
    Zhao, Yuan
    Wang, Wenyan
    Wu, Ziheng
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):