An Energy Conservative Numerical Scheme on Mixed Meshes for the Nonlinear Schrodinger Equation
被引:0
|
作者:
Yaguchi, Takaharu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Informat Sci & Technol, Dept Math Informat, Bunkyo Ku, Tokyo 1138656, JapanUniv Tokyo, Grad Sch Informat Sci & Technol, Dept Math Informat, Bunkyo Ku, Tokyo 1138656, Japan
Yaguchi, Takaharu
[1
]
Matsuo, Takayasu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Informat Sci & Technol, Dept Math Informat, Bunkyo Ku, Tokyo 1138656, JapanUniv Tokyo, Grad Sch Informat Sci & Technol, Dept Math Informat, Bunkyo Ku, Tokyo 1138656, Japan
Matsuo, Takayasu
[1
]
Sugihara, Masaaki
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Informat Sci & Technol, Dept Math Informat, Bunkyo Ku, Tokyo 1138656, JapanUniv Tokyo, Grad Sch Informat Sci & Technol, Dept Math Informat, Bunkyo Ku, Tokyo 1138656, Japan
Sugihara, Masaaki
[1
]
机构:
[1] Univ Tokyo, Grad Sch Informat Sci & Technol, Dept Math Informat, Bunkyo Ku, Tokyo 1138656, Japan
As is well known, for PDEs that enjoy conservation properties, numerical schemes that inherit the properties are advantageous in that the schemes give qualitatively better solutions in practice. Lately Furihata and Matsuo have developed "the discrete variational method" that automatically constructs conservative finite difference schemes on uniform meshes for a class of PDEs with certain variational structures. We extend this method to mixed meshes and derive a numerical scheme that conserves the energy and the density for the nonlinear Schrodinger equation on such meshes.
机构:
Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
Wang, Jialing
Wang, Yushun
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China