Analysis of Gene Regulatory Networks Inferred from ChIP-seq Data

被引:1
|
作者
Stamoulakatou, Eirini [1 ]
Piccardi, Carlo [1 ]
Masseroli, Marco [1 ]
机构
[1] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, I-20133 Milan, Italy
关键词
Biomolecular networks; Transcription factors; ChIP-seq; Next-Generation Sequencing; Cancer; Bioinformatics; TRANSCRIPTION;
D O I
10.1007/978-3-030-17938-0_29
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Computational network biology aims to understand cell behavior through complex network analysis. The Chromatin Immuno-Precipitation sequencing (ChIP-seq) technique allows interrogating the physical binding interactions between proteins and DNA using Next-Generation Sequencing. Taking advantage of this technique, in this study we propose a computational framework to analyze gene regulatory networks built from ChIP-seq data. We focus on two different cell lines: GM12878, a normal lymphoblastoid cell line, and K562, an immortalised myelogenous leukemia cell line. In the proposed framework, we preprocessed the data, derived network relationships in the data, analyzed their network properties, and identified differences between the two cell lines through network comparison analysis. Throughout our analysis, we identified known cancer genes and other genes that may play important roles in chronic myelogenous leukemia.
引用
下载
收藏
页码:319 / 331
页数:13
相关论文
共 50 条
  • [21] ChIP-PED enhances the analysis of ChIP-seq and ChIP-chip data
    Wu, George
    Yustein, Jason T.
    McCall, Matthew N.
    Zilliox, Michael
    Irizarry, Rafael A.
    Zeller, Karen
    Dang, Chi V.
    Ji, Hongkai
    BIOINFORMATICS, 2013, 29 (09) : 1182 - 1189
  • [22] Transcription factor binding predictions using TRAP for the analysis of ChIP-seq data and regulatory SNPs
    Morgane Thomas-Chollier
    Andrew Hufton
    Matthias Heinig
    Sean O'Keeffe
    Nassim El Masri
    Helge G Roider
    Thomas Manke
    Martin Vingron
    Nature Protocols, 2011, 6 : 1860 - 1869
  • [23] Transcription factor binding predictions using TRAP for the analysis of ChIP-seq data and regulatory SNPs
    Thomas-Chollier, Morgane
    Hufton, Andrew
    Heinig, Matthias
    O'Keeffe, Sean
    El Masri, Nassim
    Roider, Helge G.
    Manke, Thomas
    Vingron, Martin
    NATURE PROTOCOLS, 2011, 6 (12) : 1860 - 1869
  • [24] Normalization of ChIP-seq data with control
    Kun Liang
    Sündüz Keleş
    BMC Bioinformatics, 13
  • [25] Normalization of ChIP-seq data with control
    Liang, Kun
    Keles, Sunduz
    BMC BIOINFORMATICS, 2012, 13
  • [26] The comprehensive transcriptional analysis in Caenorhabditis elegans by integrating ChIP-seq and gene expression data
    He, Kan
    Shao, Jiaofang
    Zhao, Zhongying
    Liu, Dahai
    GENETICS RESEARCH, 2014, 96 : e005
  • [27] Crunch: integrated processing and modeling of ChIP-seq data in terms of regulatory motifs
    Berger, Severin
    Pachkov, Mikhail
    Arnold, Phil
    Omidi, Saeed
    Kelley, Nicholas
    Salatino, Silvia
    van Nimwegen, Erik
    GENOME RESEARCH, 2019, 29 (07) : 1164 - 1177
  • [28] QUANTIFYING LOCALITY OF CIS-REGULATORY MECHANISMS BASED ON ChIP-Seq DATA
    Alexa, Adrian
    Lengauer, Thomas
    Bock, Christoph
    Assenov, Yassen
    CELLULAR ONCOLOGY, 2009, 31 (02) : 129 - 129
  • [29] Detection of Regulatory SNPs in Human Genome Using ChIP-seq ENCODE Data
    Bryzgalov, Leonid O.
    Antontseva, Elena V.
    Matveeva, Marina Yu.
    Shilov, Alexander G.
    Kashina, Elena V.
    Mordvinov, Viatcheslav A.
    Merkulova, Tatyana I.
    PLOS ONE, 2013, 8 (10):
  • [30] jChIP: A graphical environment for exploratory ChIP-Seq data analysis
    Chojnowski K.
    Goryca K.
    Rubel T.
    Mikula M.
    BMC Research Notes, 7 (1)