The effects of elevated atmospheric CO2 concentration on the biological control of invasive aquatic weeds

被引:12
|
作者
Baso, Nompumelelo C. [1 ,2 ]
Coetzee, Julie A. [1 ,2 ]
Ripley, Brad S. [1 ]
Hill, Martin P. [2 ]
机构
[1] Rhodes Univ, Bot Dept, Grahamstown, South Africa
[2] Rhodes Univ, Dept Zool & Entomol, Ctr Biol Control, Grahamstown, South Africa
基金
新加坡国家研究基金会;
关键词
Climate Change; Biological Invasion; Plant Biomass; C:N; Herbivory; Photosynthesis; CLIMATE-CHANGE; EICHHORNIA-CRASSIPES; AZOLLA-FILICULOIDES; WATER HYACINTH; PLANTS; GROWTH; RESPONSES; LIGHT; EUTROPHICATION; COLEOPTERA;
D O I
10.1016/j.aquabot.2020.103348
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
There has been a rapid increase in atmospheric CO2 concentration, from pre-industrial values of 280 ppm to more than 400 ppm currently, and this is expected to double by the end of the 21st century. Studies have shown that plants grown at elevated CO2 concentrations have increased growth rates and invest more in carbon-based defences. This has important implications for the management of invasive alien plants, especially using biological control which is mostly dependent on herbivorous insects. The aim of this study was to investigate the effects of elevated atmospheric CO2 on the biological control of four invasive aquatic weeds (Azolla filiculoides, Salvinia molesta, Pistia stratiotes and Myriophyllum aquaticum). These species are currently under successful control by their respective biological control agents (Stenopelmus rufinasus, Cyrtobagous salviniae, Neohydronomus affinis, and Lysathia sp.) in South Africa. The plant species were grown in a two factorial design experiment, where atmospheric CO2 concentrations were set at ambient (400 ppm) or elevated (800 ppm), and plants were either subjected to or not subjected to herbivory by their target biological control agents. There was an overall increase in biomass production and C:N across all species at elevated CO2, both in the absence and presence of biological control, although C:N of M. aquaticum and biomass of A. filiculoides with herbivory were not constant with this trend. Insect feeding damage was reduced by elevated CO2, except for S. molesta. Thus, we can expect that plants will respond differently to CO2 increase, but the general trend suggests that these species will become more challenging to manage through biological control in future.
引用
下载
收藏
页数:7
相关论文
共 50 条
  • [31] Effects of Simulated Elevated CO2 Concentration and Atmospheric Temperature on Quality Formation of Lycium barbarum Fruits
    Ma Y.
    Feng X.
    Gao H.
    Song L.
    Cao B.
    Linye Kexue/Scientia Silvae Sinicae, 2024, 60 (03): : 1 - 9
  • [32] Effects of elevated atmospheric CO2 concentration and temperature on litter decomposition in streams: A meta-analysis
    Amani, Mabano
    Graca, Manuel A. S.
    Ferreira, Veronica
    INTERNATIONAL REVIEW OF HYDROBIOLOGY, 2019, 104 (1-2) : 14 - 25
  • [33] Effects of elevated atmospheric CO2 concentration on growth and photosynthesis in eddo at two different air temperatures
    Bin Zaher, Md Akik
    Kumagai, Etsushi
    Yabiku, Takayuki
    Nakajima, Miyuki
    Matsunami, Toshinori
    Matsuyama, Nobuhiko
    Thinh, Nguyen Cong
    Hasegawa, Toshihiro
    Kawasaki, Michio
    PLANT PRODUCTION SCIENCE, 2021, 24 (03) : 363 - 373
  • [34] Effects of atmospheric CO2 concentration on wheat yield:: review of results from experiments using various approaches to control CO2 concentration
    Amthor, JS
    FIELD CROPS RESEARCH, 2001, 73 (01) : 1 - 34
  • [35] CO2 gas exchange and mass production during germination of radish at elevated atmospheric CO2 concentration
    Overdieck, D
    JOURNAL OF APPLIED BOTANY-ANGEWANDTE BOTANIK, 1996, 70 (5-6): : 205 - 210
  • [36] Responses of two Populus clones to elevated atmospheric CO2 concentration in the field
    Tognetti, R
    Longobucco, A
    Raschi, A
    Miglietta, F
    Fumagalli, I
    ANNALS OF FOREST SCIENCE, 1999, 56 (06) : 493 - 500
  • [37] Response of Norway spruce root system to elevated atmospheric CO2 concentration
    Radek Pokorný
    Ivana Tomášková
    Michal V. Marek
    Acta Physiologiae Plantarum, 2013, 35 : 1807 - 1816
  • [38] Response of Norway spruce root system to elevated atmospheric CO2 concentration
    Pokorny, Radek
    Tomaskova, Ivana
    Marek, Michal V.
    ACTA PHYSIOLOGIAE PLANTARUM, 2013, 35 (06) : 1807 - 1816
  • [39] Impacts of elevated atmospheric CO2 concentration on terrestrial-aquatic carbon transfer and a downstream aquatic microbial community (vol 80, 27, 2018)
    Rochelle-Newall, Emma
    Niboyet, Audrey
    Jardillier, Ludwig
    Fiorini, Sarah
    Chollet, Simon
    Llavata, Mathieu
    de Santis, Elisa
    Barot, Sebastien
    Lacroix, Gerard
    AQUATIC SCIENCES, 2018, 80 (03)
  • [40] Acclimation of nitrogen uptake capacity of rice to elevated atmospheric CO2 concentration
    Shimono, Hiroyuki
    Bunce, James A.
    ANNALS OF BOTANY, 2009, 103 (01) : 87 - 94