On the stability of periodic solutions of the damped pendulum equation

被引:0
|
作者
Cepicka, J [1 ]
Drabek, P [1 ]
Jensikova, J [1 ]
机构
[1] DEPT CITY INFORMAT SYST,KARLOVY VARY 36120,CZECH REPUBLIC
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:712 / 723
页数:12
相关论文
共 50 条
  • [21] PREVALENCE OF STABLE PERIODIC SOLUTIONS IN THE FORCED RELATIVISTIC PENDULUM EQUATION
    Wang, Feng
    Chu, Jifeng
    Liang, Zaitao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (10): : 4579 - 4594
  • [22] Exponential stability of a pendulum in dynamic boundary feedback with a viscous damped wave equation
    Lu, Lu
    Lu, Bao-Qing
    JOURNAL OF CONTROL AND DECISION, 2022, 9 (02) : 186 - 192
  • [23] Periodic solutions of the pendulum
    Kucinski, MY
    Monteiro, LHA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (47): : 8489 - 8505
  • [24] Lyapunov stability of elliptic periodic solutions of nonlinear damped equations
    Chu, Jifeng
    Ding, Jinhong
    Jiang, Yongxin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 396 (01) : 294 - 301
  • [25] Effect of resonance on the existence of periodic solutions for strongly damped wave equation
    Kokocki, Piotr
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 125 : 167 - 200
  • [26] Existence of periodic solutions of an autonomous damped wave equation in thin domains
    Johnson R.
    Kamenskii M.
    Nistri P.
    Journal of Dynamics and Differential Equations, 1998, 10 (3) : 409 - 424
  • [27] Prevalence of Non-degenerate Periodic Solutions in the Forced Pendulum Equation
    Ortega, Rafael
    ADVANCED NONLINEAR STUDIES, 2013, 13 (01) : 219 - 229
  • [28] A forced pendulum equation without stable periodic solutions of a fixed period
    Ortega, Rafael
    PORTUGALIAE MATHEMATICA, 2014, 71 (3-4) : 193 - 216
  • [29] Inverted pendulum under hysteretic control: stability zones and periodic solutions
    Semenov, Mikhail E.
    Shevlyakova, Darya V.
    Meleshenko, Peter A.
    NONLINEAR DYNAMICS, 2014, 75 (1-2) : 247 - 256
  • [30] Inverted pendulum under hysteretic control: stability zones and periodic solutions
    Mikhail E. Semenov
    Darya V. Shevlyakova
    Peter A. Meleshenko
    Nonlinear Dynamics, 2014, 75 : 247 - 256