MAXIMUM-ENTROPY SCATTERING MODELS FOR FINANCIAL TIME SERIES

被引:0
|
作者
Leonarduzzi, Roberto [1 ]
Rochette, Gaspar [1 ]
Bouchaud, Jean-Philhpe [2 ]
Mallat, Stephane [1 ,3 ]
机构
[1] PSL, Ecole Normale Super, F-75005 Paris, France
[2] Capital Fund Management, Sci & Finance, F-75009 Paris, France
[3] Coll France, F-75005 Paris, France
来源
2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2019年
关键词
Maximum entropy models; scattering transform; wavelets; financial time series;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Modeling time series with complex statistical properties such as heavy-tails, long-range dependence, and temporal asymmetries remains an open problem. In particular, financial time series exhibit such properties. Existing models suffer from serious limitations and often rely on high-order moments. We introduce a wavelet-based maximum entropy model for such random processes, based on new scattering and phase-harmonic moments. We analyze the model's performance with a synthetic multifractal random process and real-world financial time series. We show that scattering moments capture heavy tails and multifractal properties without estimating high-order moments. Further, we show that additional phase-harmonic terms capture temporal asymmetries.
引用
收藏
页码:5496 / 5500
页数:5
相关论文
共 50 条
  • [41] Towards a Computationally Tractable Maximum Entropy Principle for Nonstationary Financial Time Series
    Marchenko, Ganna
    Gagliardini, Patrick
    Horenko, Illia
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2018, 9 (04): : 1249 - 1285
  • [42] Nonclassical maximum-entropy states
    Herzog, U
    Bergou, JA
    PHYSICAL REVIEW A, 1997, 56 (02): : 1658 - 1661
  • [43] MAXIMUM-ENTROPY AND RELIABILITY DISTRIBUTIONS
    TEITLER, S
    RAJAGOPAL, AK
    NGAI, KL
    IEEE TRANSACTIONS ON RELIABILITY, 1986, 35 (04) : 391 - 395
  • [44] DECOMPOSITION OF ION-SCATTERING SPECTROSCOPY DATA EMPLOYING MAXIMUM-ENTROPY
    FISCHER, R
    VONDERLINDEN, W
    DOSE, V
    SURFACE SCIENCE, 1995, 337 (03) : 243 - 248
  • [45] Gravity models of networks: Integrating maximum-entropy and econometric approaches
    Di Vece, Marzio
    Garlaschelli, Diego
    Squartini, Tiziano
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [47] MAXIMUM-ENTROPY AND THE MAGNITUDE DISTRIBUTION
    BERRILL, JB
    DAVIS, RO
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 1980, 70 (05) : 1823 - 1831
  • [48] ON THE RATIONALE OF MAXIMUM-ENTROPY METHODS
    JAYNES, ET
    PROCEEDINGS OF THE IEEE, 1982, 70 (09) : 939 - 952
  • [49] MAXIMUM-ENTROPY TOKAMAK CONFIGURATIONS
    MINARDI, E
    LAMPIS, G
    PLASMA PHYSICS AND CONTROLLED FUSION, 1990, 32 (10) : 819 - 831
  • [50] MAXIMUM-ENTROPY AND STATISTICAL FORCES
    MCLACHLAN, AD
    GAZZETTA CHIMICA ITALIANA, 1987, 117 (01): : 11 - 15