More about powerful numbers

被引:0
|
作者
Mincu, G. [1 ]
Panaitopol, L. [1 ]
机构
[1] Univ Bucuresti, Fac Matemat, Bucharest 010014, Romania
关键词
powerful numbers; inequalities;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove in this paper stronger inequalities for the function K(x) which measures the distribution of powerful numbers. We use them in order to study the sequence (u(n))(n) of powerful numbers, proving the inequalities n(2)/c(2) + 0.3n (3)root n(2) <= u(n) <= n(2)/c(2) + 0.5n (3)root n(2) (for c = zeta(3/2)/zeta(3) and n >= 170), u(n+1) - u(n) <= n (for n >= 1316), and u(n+1) - u(n) <= 4n (for n >= 1) We also study the convergence of some number series, drawing information about, the asymptotic behavior of (u(n+1) - u(n))(n).
引用
收藏
页码:451 / 460
页数:10
相关论文
共 50 条
  • [21] A sequence attached to powerful numbers
    Copil, Vlad
    Panaitopol, Laureniu
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2007, 50 (03): : 249 - 258
  • [22] More powerful tests for the sign testing problem about gamma scale parameters
    Chan, Chia-Hao
    Liu, Huimei
    Zen, Mei-Mei
    STATISTICS, 2015, 49 (03) : 564 - 577
  • [24] Fortran is getting more and more powerful
    Reid, John K.
    APPLIED PARALLEL COMPUTING: STATE OF THE ART IN SCIENTIFIC COMPUTING, 2006, 3732 : 33 - 42
  • [25] More powerful tornadoes
    Graham Simpkins
    Nature Climate Change, 2019, 9 : 88 - 88
  • [26] A MORE POWERFUL PENCIL
    YRIART, DF
    BYTE, 1983, 8 (08): : 24 - &
  • [27] Smaller but more powerful
    Gotte, Rudolf
    Ascom Technical Review, 1993, (02): : 11 - 15
  • [28] Editorial: Numbers, numbers, and more numbers
    不详
    JOURNAL OF ACADEMIC LIBRARIANSHIP, 1996, 22 (04): : 249 - 250
  • [29] More powerful postprocessor
    不详
    MECHANICAL ENGINEERING, 1997, 119 (05) : 16 - &
  • [30] More powerful tornadoes
    Simpkins, Graham
    NATURE CLIMATE CHANGE, 2019, 9 (02) : 88 - 88