Lifting of Nichols algebras of type B2

被引:16
|
作者
Beattie, M [1 ]
Dascalescu, S
Raianu, S
机构
[1] Mt Allison Univ, Dept Math & Comp Sci, Sackville, NB E4L 1E6, Canada
[2] Univ Bucharest, Fac Math, RO-70109 Bucharest 1, Romania
[3] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
关键词
D O I
10.1007/BF02784503
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute liftings of the Nichols algebra of a Yetter-Drinfeld module of Cartan type B-2 subject to the small restriction that the diagonal elements of the braiding matrix are primitive nth roots of 1 with odd n not equal 5. As well, we compute the liftings of a Nichols algebra of Cartan type A(2) if the diagonal elements of the braiding matrix are cube roots of 1; this case was not completely covered in previous work of Andruskiewitsch and Schneider. We study the problem of when the liftings of a given Nichols algebra are quasi-isomorphic. The Appendix (with I. Rutherford) contains a generalization of the quantum binomial formula. This formula was Used in the computation of liftings of type B-2 but is also of interest independent of these results.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [41] On the Laistrygonian Nichols algebras that are domains
    Nicolás Andruskiewitsch
    Dirceu Bagio
    Saradia Della Flora
    Daiana Flores
    Journal of Algebraic Combinatorics, 2023, 58 : 549 - 568
  • [42] Nichols algebras with standard braiding
    Ezequiel Angiono, Ivan
    ALGEBRA & NUMBER THEORY, 2009, 3 (01) : 35 - 106
  • [43] The R-matrix of quantum doubles of Nichols algebras of diagonal type
    Angiono, Ivan
    Yamane, Hiroyuki
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (02)
  • [44] RANK THREE NICHOLS ALGEBRAS OF DIAGONAL TYPE OVER ARBITRARY FIELDS
    Wang, Jing
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 218 (01) : 1 - 26
  • [45] On the Laistrygonian Nichols algebras that are domains
    Andruskiewitsch, Nicolas
    Bagio, Dirceu
    Della Flora, Saradia
    Flores, Daiana
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2023, 58 (02) : 549 - 568
  • [46] A simplicial complex of Nichols algebras
    Cuntz, M.
    Lentner, S.
    MATHEMATISCHE ZEITSCHRIFT, 2017, 285 (3-4) : 647 - 683
  • [47] On Nichols (braided) Lie algebras
    Wu, Weicai
    Zhang, Shouchuan
    Zhang, Yao-Zhong
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (10)
  • [48] Geometric perspective on Nichols algebras
    Meir, Ehud
    JOURNAL OF ALGEBRA, 2022, 601 : 390 - 422
  • [49] Nichols algebras that are quantum planes
    Andruskiewitsch, Nicolas
    Jury Giraldi, Joao Matheus
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (05): : 961 - 991
  • [50] A freeness theorem for Nichols algebras
    Graña, M
    JOURNAL OF ALGEBRA, 2000, 231 (01) : 235 - 257