Contrastive learning of graph encoder for accelerating pedestrian trajectory prediction training

被引:0
|
作者
Yao, Zonggui [1 ]
Yu, Jun [1 ]
Ding, Jiajun [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Key Lab Complex Syst Modeling & Simulat, Hangzhou 310018, Peoples R China
关键词
D O I
10.1049/ipr2.12185
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the area of pedestrian trajectory prediction, the hybrid structures of temporal feature extractor or spatial feature extractor have paved the way for the precise prediction model, and they are in larger and larger scale. Learning of specific feature encoding model not only influenced by the structure of the network, but also by the learning manners such as supervised learning and unsupervised learning. Previous works concentrated on more comprehensive encoders and more delicate designs of feature extractors. However, the mutual influence factors from the neighbour pedestrians associate with the distance to the centre pedestrian seldomly noticed. Most of the existed feature extractors in prediction models trained in the way of supervised learning other than unsupervised manners caused the problem that the extracted features are always handcrafted without the natural distinction of obscure situations. The graph contrastive accelerating encoder is proposed, which accelerates the pedestrian trajectory prediction training process of the state of the art method of spatio-temporal graph transformer networks. Employing the unsupervised contrastive learning process and the graph of neighbours representing distance affection of nearest and farthest pedestrian to the centre pedestrian, the graph contrastive accelerating encoder significantly shrinked the training time. Holding the final performance on to state of the art level, the proposed method let the lowest pedestrian trajectory prediction error show up in the obviously earlier training steps.
引用
收藏
页码:3645 / 3660
页数:16
相关论文
共 50 条
  • [1] Provable Training for Graph Contrastive Learning
    Yu, Yue
    Wang, Xiao
    Zhang, Mengmei
    Liu, Nian
    Shi, Chuan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [2] Integrating contrastive learning and adversarial learning on graph denoising encoder for recommendation
    Zhou, Wei
    Zhang, Xianyi
    Wen, Junhao
    Wang, Xibin
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 264
  • [3] Graph contrastive learning with cross-encoder for community discovery
    Shan, Zhenpei
    Zhang, Defu
    Lei, Yunqi
    APPLIED INTELLIGENCE, 2024, 54 (02) : 2211 - 2224
  • [4] Encoder augmentation for multi-task graph contrastive learning
    Wang, Xiaoyu
    Zhang, Qiqi
    Liu, Gen
    Zhao, Zhongying
    Cui, Hongzhi
    NEUROCOMPUTING, 2025, 630
  • [5] Graph contrastive learning with cross-encoder for community discovery
    Zhenpei Shan
    Defu Zhang
    Yunqi Lei
    Applied Intelligence, 2024, 54 : 2211 - 2224
  • [6] Adaptive graph contrastive learning with joint optimization of data augmentation and graph encoder
    Wu, Zhenpeng
    Chen, Jiamin
    Al-Sabri, Raeed
    Oloulade, Babatounde Moctard
    Gao, Jianliang
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (03) : 1657 - 1681
  • [7] Adaptive graph contrastive learning with joint optimization of data augmentation and graph encoder
    Zhenpeng Wu
    Jiamin Chen
    Raeed Al-Sabri
    Babatounde Moctard Oloulade
    Jianliang Gao
    Knowledge and Information Systems, 2024, 66 : 1657 - 1681
  • [8] Social graph convolutional LSTM for pedestrian trajectory prediction
    Zhou, Yutao
    Wu, Huayi
    Cheng, Hongquan
    Qi, Kunlun
    Hu, Kai
    Kang, Chaogui
    Zheng, Jie
    IET INTELLIGENT TRANSPORT SYSTEMS, 2021, 15 (03) : 396 - 405
  • [9] Unsupervised pedestrian trajectory prediction with graph neural networks
    Wang, Mingkun
    Shi, Dianxi
    Guan, Naiyang
    Zhang, Tao
    Wang, Liujing
    Li, Ruoxiang
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 832 - 839
  • [10] Pedestrian trajectory prediction using BiRNN encoder-decoder framework*
    Wu, Jiaxu
    Woo, Hanwool
    Tamura, Yusuke
    Moro, Alessandro
    Massaroli, Stefano
    Yamashita, Atsushi
    Asama, Hajime
    ADVANCED ROBOTICS, 2019, 33 (18) : 956 - 969