Pedestrian trajectory prediction using BiRNN encoder-decoder framework*

被引:10
|
作者
Wu, Jiaxu [1 ]
Woo, Hanwool [1 ]
Tamura, Yusuke [1 ]
Moro, Alessandro [1 ]
Massaroli, Stefano [1 ]
Yamashita, Atsushi [1 ]
Asama, Hajime [1 ]
机构
[1] Univ Tokyo, Sch Engn, Dept Precis Engn, Tokyo, Japan
关键词
Pedestrian trajectory prediction; artificial neural network (ANN); encoder-decoder framework; ATTENTION;
D O I
10.1080/01691864.2019.1635910
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Autonomous mobile robots navigating through human crowds are required to foresee the future trajectories of surrounding pedestrians and accordingly plan safe paths to avoid any possible collision. This paper presents a novel approach for pedestrian trajectory prediction. In particular, we developed a new method based on an encoder-decoder framework using bidirectional recurrent neural networks (BiRNN). The difficulty of incorporating social interactions into the model has been addressed thanks to the special structure of BiRNN enhanced by the attention mechanism, a proximity-independent model of the relative importance of each pedestrian. The main difference between our and the previous approaches is that BiRNN allows us to employs information on the future state of the pedestrians. We tested the performance of our method on several public datasets. The proposed model outperforms the current state-of-the-art approaches on most of these datasets. Furthermore, we analyze the resulting predicted trajectories and the learned attention scores to prove the advantages of BiRRNs on recognizing social interactions.
引用
下载
收藏
页码:956 / 969
页数:14
相关论文
共 50 条
  • [1] Pedestrian Trajectory Prediction Using RNN Encoder-Decoder with SpatioTemporal Attentions
    Bhujel, Niraj
    Yau, Wei-Yun
    Teoh, Eam Khwang
    2019 IEEE 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS SYSTEM AND ROBOTS (ICMSR 2019), 2019, : 110 - 114
  • [2] Prediction of Pedestrian Trajectory in a Crowded Environment Using RNN Encoder-Decoder
    Xiong Xincheng
    Bhujel, Niraj
    Teoh, Eam Khwang
    Yau, Wei-Yun
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON ROBOTICS AND ARTIFICIAL INTELLIGENCE, ICRAI 2019, 2019, : 64 - 69
  • [3] Crossing-Road Pedestrian Trajectory Prediction via Encoder-Decoder LSTM
    Xue, Peixin
    Liu, Jianyi
    Chen, Shitao
    Zhou, Zhuoli
    Huo, Yongbo
    Zheng, Nanning
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 2027 - 2033
  • [4] Fully Convolutional Encoder-Decoder With an Attention Mechanism for Practical Pedestrian Trajectory Prediction
    Chen, Kai
    Song, Xiao
    Yuan, Haitao
    Ren, Xiaoxiang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) : 20046 - 20060
  • [5] Aircraft Trajectory Prediction With Enriched Intent Using Encoder-Decoder Architecture
    Tran, Phu N.
    Nguyen, Hoang Q., V
    Pham, Duc-Thinh
    Alam, Sameer
    IEEE ACCESS, 2022, 10 : 17881 - 17896
  • [6] Pedestrian Trajectory Prediction in Heterogeneous Traffic using Facial Keypoints-based Convolutional Encoder-decoder Network
    Xiao, Song
    Chen, Kai
    Ren, Xiaoxiang
    Yuan, Haitao
    ACM TRANSACTIONS ON INTERNET TECHNOLOGY, 2022, 22 (04)
  • [7] Pedestrian Trajectory Prediction in Heterogeneous Traffic Using Pose Keypoints-Based Convolutional Encoder-Decoder Network
    Chen, Kai
    Song, Xiao
    Ren, Xiaoxiang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (05) : 1764 - 1775
  • [8] Pedestrian behavior prediction model with a convolutional LSTM encoder-decoder
    Chen, Kai
    Song, Xiao
    Han, Daolin
    Sun, Jinghan
    Cui, Yong
    Ren, Xiaoxiang
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 560 (560)
  • [9] Recurrent Encoder-Decoder Networks for Vessel Trajectory Prediction With Uncertainty Estimation
    Capobianco, Samuele
    Forti, Nicola
    Millefiori, Leonardo Maria
    Braca, Paolo
    Willett, Peter
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (03) : 2554 - 2565
  • [10] Using LSTM encoder-decoder for rhetorical structure prediction
    de Moura, Gustavo Bennemann
    Feltrim, Valeria Delisandra
    2018 7TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2018, : 278 - 283