A GCSS model intercomparison for a tropical squall line observed during TOGA-COARE. II: Intercomparison of single-column models and a cloud-resolving model

被引:60
|
作者
Bechtold, P
Redelsperger, JL
Beau, I
Blackburn, M
Brinkop, S
Grandpeix, JY
Grant, A
Gregory, D
Guichard, F
Hoff, C
Ioannidou, E
机构
[1] Observ Midi Pyrenees, Lab Aerol, UMR UPS CNRS 5560, F-31400 Toulouse, France
[2] Univ Reading, Reading RG6 2AH, Berks, England
[3] Deutsch Zentrum Luft & Raumfahrt, Cologne, Germany
[4] Meteorol Dynam Lab, Paris, France
[5] Hadley Ctr Climate Predict & Res, Bracknell, Berks, England
[6] European Ctr Medium Range Weather Forecasts, Reading, Berks, England
关键词
convection parametrization; mass flux; single-column models;
D O I
10.1256/smsqj.56404
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper presents single-column model (SCM) simulations of a tropical squall-line case observed during the Coupled Ocean-Atmosphere Response Experiment of the Tropical Ocean/Global Atmosphere Programme. This case-study was part of an international model intercomparison project organized by Working Group 4 'Precipitating Convective Cloud Systems' of the GEWEX (Global Energy and Water-cycle EXperiment) Cloud System Study. Eight SCM groups using different deep-convection parametrizations participated in this project. The SCMs were forced by temperature and moisture tendencies that had been computed from a reference cloud-resolving model (CRM) simulation using open boundary conditions. The comparison of the SCM results with the reference CRM simulation provided insight into the ability of current convection and cloud schemes to represent organized convection. The CRM results enabled a detailed evaluation of the SCMs in terms of the thermodynamic structure and the convective mass flux of the system, the latter being closely related to the surface convective precipitation. It is shown that the SCMs could reproduce reasonably well the time evolution of the surface convective and stratiform precipitation, the convective mass flux, and the thermodynamic structure of the squall-line system. The thermodynamic structure simulated by the SCMs depended on how the models partitioned the precipitation between convective and stratiform. However, structural differences persisted in the thermodynamic profiles simulated by the SCMs and the CRM. These differences could be attributed to the fact that the total mass Aux used to compute the SCM forcing differed from the convective mass Aux. The SCMs could not adequately represent these organized mesoscale circulations and the microphysical/radiative forcing associated with the stratiform region. This issue is generally known as the 'scale-interaction' problem that can only be properly addressed in fully three-dimensional simulations. Sensitivity simulations run by several groups showed that the time evolution of the surface convective precipitation was considerably smoothed when the convective closure was based on convective available potential energy instead of moisture convergence. Finally, additional SCM simulations without using a convection parametrization indicated that the impact of a convection parametrization in forced SCM runs was more visible in the moisture profiles than in the temperature profiles because convective transport was particularly important in the moisture budget.
引用
下载
收藏
页码:865 / 888
页数:24
相关论文
共 21 条
  • [21] Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: Single-layer cloud
    Klein, Stephen A.
    McCoy, Renata B.
    Morrison, Hugh
    Ackerman, Andrew S.
    Avramov, Alexander
    de Boer, Gijs
    Chen, Mingxuan
    Cole, Jason N. S.
    Del Genio, Anthony D.
    Falk, Michael
    Foster, Michael J.
    Fridlind, Ann
    Golaz, Jean-Christophe
    Hashino, Tempei
    Harrington, Jerry Y.
    Hoose, Corinna
    Khairoutdinov, Marat F.
    Larson, Vincent E.
    Liu, Xiaohong
    Luo, Yali
    McFarquhar, Greg M.
    Menon, Surabi
    Neggers, Roel A. J.
    Park, Sungsu
    Poellot, Michael R.
    Schmidt, Jerome M.
    Sednev, Igor
    Shipway, Ben J.
    Shupe, Matthew D.
    Spangenbery, Douglas A.
    Sud, Yogesh C.
    Turner, David D.
    Veron, Dana E.
    von Salzen, Knut
    Walker, Gregory K.
    Wang, Zhien
    Wolf, Audrey B.
    Xie, Shaocheng
    Xu, Kuan-Man
    Yang, Fanglin
    Zhang, Gong
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2009, 135 (641) : 979 - 1002