Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis

被引:501
|
作者
Li, Chuan [1 ]
Wand, Michael [1 ]
机构
[1] Mainz Univ, Mainz, Germany
关键词
TEXTURE SYNTHESIS;
D O I
10.1109/CVPR.2016.272
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper studies a combination of generative Markov random field (MRF) models and discriminatively trained deep convolutional neural networks (dCNNs) for synthesizing 2D images. The generative MRF acts on higher-levels of a dCNN feature pyramid, controling the image layout at an abstract level. We apply the method to both photographic and non-photo-realistic (artwork) synthesis tasks. The MRF regularizer prevents over-excitation artifacts and reduces implausible feature mixtures common to previous dCNN inversion approaches, permitting synthezing photographic content with increased visual plausibility. Unlike standard MRF-based texture synthesis, the combined system can both match and adapt local features with considerable variability, yielding results far out of reach of classic generative MRF methods.
引用
收藏
页码:2479 / 2486
页数:8
相关论文
共 50 条
  • [41] Convolutional Neural Networks for Image Steganalysis
    Bashkirova, Dina
    BIONANOSCIENCE, 2016, 6 (03) : 246 - 248
  • [42] Double Markov random fields and Bayesian image segmentation
    Melas, DE
    Wilson, SP
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 357 - 365
  • [43] Extended Markov random fields for predictive image segmentation
    Stolkin, R.
    Hodgetts, M.
    Greig, A.
    Gilby, J.
    PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON ADVANCES IN PATTERN RECOGNITION, 2007, : 208 - +
  • [44] Hyperspectral Image Classification With CapsNet and Markov Random Fields
    Jiang, Xuefeng
    Zhang, Yue
    Liu, Wenbo
    Gao, Junyu
    Liu, Junrui
    Zhang, Yanning
    Lin, Jianzhe
    IEEE ACCESS, 2020, 8 : 191956 - 191968
  • [45] Image Registration using Markov random coefficient fields
    Arce-Santana, Edgar Roman
    Alba, Alfonso
    COMBINATORIAL IMAGE ANALYSIS, 2008, 4958 : 306 - 317
  • [46] Fusion of Image Segmentations under Markov Random Fields
    Karadag, Ozge Oztimur
    Vural, Fatos T. Yarman
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 930 - 935
  • [47] Markov random fields model and applications to image processing
    Smii, Boubaker
    AIMS MATHEMATICS, 2022, 7 (03): : 4459 - 4471
  • [48] Bayesian image classification using Markov random fields
    INRIA, Antipolis, France
    Image Vision Comput, 4 (285-295):
  • [49] Bayesian image classification using Markov random fields
    Berthod, M
    Kato, Z
    Yu, S
    Zerubia, J
    IMAGE AND VISION COMPUTING, 1996, 14 (04) : 285 - 295
  • [50] An Image Fusion Approach Based on Markov Random Fields
    Xu, Min
    Chen, Hao
    Varshney, Pramod K.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (12): : 5116 - 5127