SiS nanosheets as a promising anode material for Li-ion batteries: a computational study

被引:14
|
作者
Kong, Qingquan [1 ]
Feng, Wei [1 ]
Wang, Qingyuan [1 ]
Gan, Li-Yong [2 ]
Sun, Chenghua [1 ,3 ]
机构
[1] Chengdu Univ, Sch Mech Engn, Chengdu 610106, Sichuan, Peoples R China
[2] Southwest Jiaotong Univ, Superconduct & New Energy R&D Ctr, Chengdu 610031, Sichuan, Peoples R China
[3] Swinburne Univ Technol, Fac Sci Engn & Technol, Dept Chem & Biotechnol, Hawthorn, Vic 3122, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
HIGH-CAPACITY ANODE; 2-DIMENSIONAL SIS; LITHIUM; SILICON; ADSORPTION; DIFFUSION; OXIDE; PHOSPHORENE; ELECTRODES; PRISTINE;
D O I
10.1039/c7cp00379j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently, a two-dimensional Pma2-SiS monolayer has been predicted to show promising electronic properties [Nano Lett., 2015, 16, 1110]. However, it is suggested that Pma2-SiS is not suitable as an anode for Li-ion batteries [J. Power Sources, 2016, 331, 391]. By employing density functional theory calculations, we find that an ultrahigh theoretical specific capacity of 893.4 mA h g(-1) can be achieved in Pma2-SiS due to the strong bonding between Li and the S atoms released from Si-S bond breakage. Additionally, the low barrier of Li-diffusion (0.08 eV) along the Si-Si bond direction and the moderate average voltage (1.12 V) of the Li intercalation suggest that Pma2-SiS is promising as an anode material for Li-ion battery applications.
引用
收藏
页码:8563 / 8567
页数:5
相关论文
共 50 条
  • [31] Silica from diatom frustules as anode material for Li-ion batteries
    Norberg, Andreas Nicolai
    Wagner, Nils Peter
    Kaland, Henning
    Vullum-Bruer, Fride
    Svensson, Ann Mari
    RSC ADVANCES, 2019, 9 (70) : 41228 - 41239
  • [32] Electrochemical and thermal behavior of graphite anode material for Li-ion batteries
    Bang, HJ
    Barsukov, IV
    Zaleski, P
    Prakash, J
    BATTERIES AND SUPERCAPACITORS, 2003, : 368 - 373
  • [33] COF-based anode material for rechargeable Li-ion batteries
    Omidvar, Akbar
    SYNTHETIC METALS, 2023, 297
  • [34] Theoretical prediction of honeycomb carbon as Li-ion batteries anode material
    Hu, Junping
    Zhang, Xiaohang
    EUROPEAN PHYSICAL JOURNAL B, 2018, 91 (05):
  • [35] Development of high power anode material for automotive Li-ion batteries
    Chahar, Bharat S.
    Mao, Zhenhua
    World Electric Vehicle Journal, 2009, 3 (01)
  • [36] Porous CoO/C polyhedra as anode material for Li-ion batteries
    Yuan, Weiwei
    Zhang, Jun
    Xie, Dong
    Dong, Zimin
    Su, Qingmei
    Du, Gaohui
    ELECTROCHIMICA ACTA, 2013, 108 : 506 - 511
  • [37] Theoretical prediction of honeycomb carbon as Li-ion batteries anode material
    Junping Hu
    Xiaohang Zhang
    The European Physical Journal B, 2018, 91
  • [38] Lithium Borocarbide LiBC as an Anode Material for Rechargeable Li-Ion Batteries
    Li, De
    Dai, Pengcheng
    Chen, Yong
    Peng, Ruwen
    Sun, Yang
    Zhou, Haoshen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (32): : 18231 - 18236
  • [39] Novel spherical microporous carbon as anode material for Li-ion batteries
    Wang, Q
    Li, H
    Chen, LQ
    Huang, XJ
    SOLID STATE IONICS, 2002, 152 : 43 - 50
  • [40] Synthesis of nanosized Si composite anode material for Li-ion batteries
    He, Xiangming
    Pu, Weihua
    Ren, Jianguo
    Wang, Li
    Jiang, Changyin
    Wan, Chunrong
    IONICS, 2007, 13 (01) : 51 - 54