Decellularized extracellular matrix of human umbilical vein endothelial cells promotes endothelial differentiation of stem cells from exfoliated deciduous teeth

被引:35
|
作者
Gong, Ting [1 ]
Heng, Boon Chin [1 ,2 ]
Xu, Jianguang [1 ]
Zhu, Shaoyue [1 ]
Yuan, Changyong [1 ]
Lo, Edward Chin Man [3 ]
Zhang, Chengfei [1 ,4 ]
机构
[1] Univ Hong Kong, Dept Endodontol, Fac Dent, Pokfulam, Hong Kong, Peoples R China
[2] Sunway Univ, Dept Biol Sci, Bandar Sunway, Selangor Darul, Malaysia
[3] Univ Hong Kong, Dept Dent Publ Hlth, Fac Dent, Pokfulam, Hong Kong, Peoples R China
[4] HKU Shenzhen Inst Res & Innovat, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
dental pulp stem cells; extracellular matrix; decellularization; endothelial cells; angiogenesis; tissue engineering; HUMAN BONE-MARROW; OSTEOGENIC DIFFERENTIATION; SUPPORT; ECM;
D O I
10.1002/jbm.a.36003
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Dental stem cells can serve as a potential source of functional endothelial cells for tissue engineering applications, but the endothelial-lineage differentiation efficiency is rather low even with growth factors and mechanical stimuli, which greatly limits their clinical applications. This is partly due to the deficiency of standard two-dimensional (2-D) culture systems, which is unable to recapitulate the three-dimensional (3-D) in vivo milieu that is rich in extracellular matrix. Hence, we extracted decellularized extracellular matrix from human umbilical vein endothelial cells (HUVECs-DECM) to provide a bioactive substratum conducive to the endothelial differentiation of dental stem cells. Compared to cells plated on tissue culture polystyrene (TCP), stem cells from exfoliated deciduous teeth (SHED) cultured on the HUVECs-DECM demonstrated more regular arrangement and elongated morphology. HUVECs-DECM significantly enhanced the rapid adhesion and proliferation rates of SHED, as demonstrated by WST-8 assay and immunocytochemistry indicating higher expression levels of vinculin by newly adherent SHED on HUVECs-DECM versus TCP. In addition, there was twofold to fivefold higher mRNA expression levels of endothelial-specific markers CD31 and VEGFR-2 in SHED after seven days of culture on DECM versus TCP. Functional testing with in vitro matrigel angiogenesis assay identified more capillary-like structure formation with significantly higher tubule length in SHED induced by DECM versus TCP. Hence, the results of this study provide a better understanding of the unique characteristics of cell-specific ECM and demonstrated the potential use of HUVECs-DECM as a culture substratum conducive for stimulating the endothelial differentiation of SHED for therapeutic angiogenic applications. (C) 2017 Wiley Periodicals, Inc.
引用
收藏
页码:1083 / 1093
页数:11
相关论文
共 50 条
  • [11] SHED: Stem cells from human exfoliated deciduous teeth
    Miura, M
    Gronthos, S
    Zhao, MR
    Lu, B
    Fisher, LW
    Robey, PG
    Shi, ST
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (10) : 5807 - 5812
  • [12] Secreted Factors from Stem Cells of Human Exfoliated Deciduous Teeth Directly Activate Endothelial Cells to Promote All Processes of Angiogenesis
    Kato, Makoto
    Tsunekawa, Shin
    Nakamura, Nobuhisa
    Miura-Yura, Emiri
    Yamada, Yuichiro
    Hayashi, Yusuke
    Nakai-Shimoda, Hiromi
    Asano, Saeko
    Hayami, Tomohide
    Motegi, Mikio
    Asano-Hayami, Emi
    Sasajima, Sachiko
    Morishita, Yoshiaki
    Himeno, Tatsuhito
    Kondo, Masaki
    Kato, Yoshiro
    Izumoto-Akita, Takako
    Yamamoto, Akihito
    Naruse, Keiko
    Nakamura, Jiro
    Kamiya, Hideki
    CELLS, 2020, 9 (11)
  • [13] Comparative Analysis of Proliferation and Differentiation Potentials of Stem Cells from Inflamed Pulp of Deciduous Teeth and Stem Cells from Exfoliated Deciduous Teeth
    Yu, Shi
    Diao, Shu
    Wang, Jinsong
    Ding, Gang
    Yang, Dongmei
    Fan, Zhipeng
    BIOMED RESEARCH INTERNATIONAL, 2014, 2014
  • [14] Characterization and Osteogenic Differentiation of Human Dental Pulp Stern Cells and Stem Cells from Exfoliated Deciduous Teeth
    Yazid, Farinawati
    Luchman, Nur Atmaliya
    Wahab, Rohaya Megat Abdul
    Armin, Shahrul Hisham Zainal
    SAINS MALAYSIANA, 2019, 48 (07): : 1483 - 1490
  • [15] Stem Cells from Human Exfoliated Deciduous Teeth: A Concise Review
    Ko, Chih-Sheng
    Chen, Jen-Hao
    Su, Wen-Ta
    CURRENT STEM CELL RESEARCH & THERAPY, 2020, 15 (01) : 61 - 76
  • [16] Immunomodulatory properties of stem cells from human exfoliated deciduous teeth
    Takayoshi Yamaza
    Akiyama Kentaro
    Chider Chen
    Yi Liu
    Yufang Shi
    Stan Gronthos
    Songlin Wang
    Songtao Shi
    Stem Cell Research & Therapy, 1
  • [17] Immunomodulatory properties of stem cells from human exfoliated deciduous teeth
    Yamaza, Takayoshi
    Kentaro, Akiyama
    Chen, Chider
    Liu, Yi
    Shi, Yufang
    Gronthos, Stan
    Wang, Songlin
    Shi, Songtao
    STEM CELL RESEARCH & THERAPY, 2010, 1
  • [18] Stem Cells from Human Exfoliated Deciduous Teeth: A Growing Literature
    Saez, Daniel Martinez
    Sasaki, Robson Tetsuo
    Neves, Adriana da Costa
    Pereira da Silva, Marcelo Cavenaghi
    CELLS TISSUES ORGANS, 2015, 202 (5-6) : 269 - 280
  • [19] SHED - Stem cells from human exfoliated deciduous teeth.
    Miura, M.
    Gronthos, S.
    Zhao, M.
    Lu, B.
    Fisher, L. W.
    Robey, P. G.
    Shi, S.
    JOURNAL OF DENTAL RESEARCH, 2003, 82 : B305 - B305
  • [20] Stem Cells from Human Exfoliated Deciduous Teeth: Waste to Wealth
    Haque, Nazmul
    Abu Kasim, Noor Hayaty
    CURRENT STEM CELL RESEARCH & THERAPY, 2021, 16 (05) : 493 - 494