Long memory stochastic volatility: A Bayesian approach

被引:5
|
作者
Chan, NH [1 ]
Petris, G [1 ]
机构
[1] Carnegie Mellon Univ, Dept Stat, Pittsburgh, PA 15213 USA
关键词
Markov chain Monte Carlo; state-space models;
D O I
10.1080/03610920008832549
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a simulation-based Bayesian approach to the analysis of long memory stochastic volatility models, stationary and nonstationary. The main tool used to reduce the likelihood function to a tractable form is an approximate state-space representation of the model. A data set of stock market returns is analyzed with the proposed method. The approach taken here allows a quantitative assessment of the empirical evidence in favor of the stationarity, or nonstationarity, of the instantaneous volatility of the data.
引用
收藏
页码:1367 / 1378
页数:12
相关论文
共 50 条