Pattern recognition of EEG signals during right and left motor imagery - Learning effects of the subjects

被引:4
|
作者
Inoue, Katsuhiro [1 ]
Mori, Daiki [1 ]
Pfurtscheller, Gert [2 ]
Kumanaru, Kousuke [1 ]
机构
[1] Kyushu Inst Technol, Factory Comp Sci & Syst Engn, Dept Syst Innovat & Informat, Iizuka, Fukuoka, Japan
[2] Graz Univ Technol, Inst Biomed Engn, Dept Med Informat, Graz, Austria
关键词
pattern recognition; EEG (electroencephalogram); motor imagery; and BCI (brain computer interface);
D O I
10.1007/978-4-431-30962-8_23
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Electroencephalograph (EEG) recordings during right and left motor imagery can be used to move a cursor to a target on a computer screen. Such an EEG-based brain-computer interface (BCI) can provide a new communication channel to replace an impaired motor function. It can be used by e.g., handicap users with amyotrophic lateral sclerosis (ALS). In this study, statistical pattern recognition method based on AR model was introduced to discriminate the EEG signals recorded during right and left motor imagery. And the learning effects of the subjects are investigated.
引用
收藏
页码:251 / +
页数:2
相关论文
共 50 条
  • [41] Pattern Recognition of Motor Imagery EEG Signal in Noninvasive Brain-Computer Interface
    Qu, Shen
    Liu, Jingmeng
    Chen, Weihai
    Zhang, Jianbin
    Chen, Weidong
    PROCEEDINGS OF THE 2018 13TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2018), 2018, : 1814 - 1819
  • [42] Classification of motor imagery EEG signals based on STFTs
    Mu, Zhendong
    Xiao, Dan
    Hu, Jianfeng
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 181 - 184
  • [43] Merged CNNs for the classification of EEG motor imagery signals
    Echtioui A.
    Zouch W.
    Ghorbel M.
    Multimedia Tools and Applications, 2025, 84 (1) : 373 - 395
  • [44] Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review
    Hamdi Altaheri
    Ghulam Muhammad
    Mansour Alsulaiman
    Syed Umar Amin
    Ghadir Ali Altuwaijri
    Wadood Abdul
    Mohamed A. Bencherif
    Mohammed Faisal
    Neural Computing and Applications, 2023, 35 : 14681 - 14722
  • [45] Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review
    Altaheri, Hamdi
    Muhammad, Ghulam
    Alsulaiman, Mansour
    Amin, Syed Umar
    Altuwaijri, Ghadir Ali
    Abdul, Wadood
    Bencherif, Mohamed A.
    Faisal, Mohammed
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (20): : 14681 - 14722
  • [46] Rank-based Discriminative Feature Learning for Motor Imagery Classification in EEG signals
    Kim, Byung Hyung
    Choi, Jin Woo
    Jo, Sungho
    2021 9TH IEEE INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2021, : 18 - 21
  • [47] Simultaneous classification of motor imagery and SSVEP EEG signals
    Dehzangi, Omid
    Zou, Yuan
    Jafari, Roozbeh
    2013 6TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2013, : 1303 - 1306
  • [48] Detection of motor imagery EEG signals employing Naive Bayes based learning process
    Siuly
    Wang, Hua
    Zhang, Yanchun
    MEASUREMENT, 2016, 86 : 148 - 158
  • [49] Recognition of multi-class motor imagery EEG signals based on convolutional neural network
    Liu J.-Z.
    Ye F.-F.
    Xiong H.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2021, 55 (11): : 2054 - 2066
  • [50] Classification of left and right foot kinaesthetic motor imagery using common spatial pattern
    Tariq, Madiha
    Trivailo, Pavel M.
    Simic, Milan
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2020, 6 (01)