Induced smoothing for the semiparametric accelerated failure time model: asymptotics and extensions to clustered data

被引:54
|
作者
Johnson, Lynn M. [1 ]
Strawderman, Robert L. [2 ]
机构
[1] Cornell Univ, Dept Stat Sci, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Biol Stat & Computat Biol, Ithaca, NY 14853 USA
基金
美国国家卫生研究院;
关键词
Censoring; Convex optimization; Multivariate survival data; Rank regression; LINEAR-REGRESSION ANALYSIS; RANK REGRESSION;
D O I
10.1093/biomet/asp025
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper extends the induced smoothing procedure of Brown & Wang (2006) for the semiparametric accelerated failure time model to the case of clustered failure time data. The resulting procedure permits fast and accurate computation of regression parameter estimates and standard errors using simple and widely available numerical methods, such as the Newton-Raphson algorithm. The regression parameter estimates are shown to be strongly consistent and asymptotically normal; in addition, we prove that the asymptotic distribution of the smoothed estimator coincides with that obtained without the use of smoothing. This establishes a key claim of Brown & Wang (2006) for the case of independent failure time data and also extends such results to the case of clustered data. Simulation results show that these smoothed estimates perform as well as those obtained using the best available methods at a fraction of the computational cost.
引用
收藏
页码:577 / 590
页数:14
相关论文
共 50 条
  • [21] Bayesian semiparametric inference for the accelerated failure-time model
    Kuo, L
    Mallick, B
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1997, 25 (04): : 457 - 472
  • [22] Semiparametric inference for an accelerated failure time model with dependent truncation
    Takeshi Emura
    Weijing Wang
    Annals of the Institute of Statistical Mathematics, 2016, 68 : 1073 - 1094
  • [23] SEMIPARAMETRIC ACCELERATED FAILURE TIME MODEL FOR LENGTH-BIASED DATA WITH APPLICATION TO DEMENTIA STUDY
    Ning, Jing
    Qin, Jing
    Shen, Yu
    STATISTICA SINICA, 2014, 24 (01) : 313 - 333
  • [24] SEMIPARAMETRIC ESTIMATION OF AN ACCELERATED FAILURE TIME MODEL WITH TIME-DEPENDENT COVARIATES
    ROBINS, J
    TSIATIS, AA
    BIOMETRIKA, 1992, 79 (02) : 311 - 319
  • [25] An efficient Gehan-type estimation for the accelerated failure time model with clustered and censored data
    Liya Fu
    Zhuoran Yang
    Yan Zhou
    You-Gan Wang
    Lifetime Data Analysis, 2021, 27 : 679 - 709
  • [26] An efficient Gehan-type estimation for the accelerated failure time model with clustered and censored data
    Fu, Liya
    Yang, Zhuoran
    Zhou, Yan
    Wang, You-Gan
    LIFETIME DATA ANALYSIS, 2021, 27 (04) : 679 - 709
  • [27] Semiparametric Binary Model for Clustered Survival Data
    Arlin, Rifina
    Ibrahim, Noor Akma
    Arasan, Jayanthi
    Abu Bakar, Rizam
    22ND NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM22), 2015, 1682
  • [28] Adaptive group bridge selection in the semiparametric accelerated failure time model
    Huang, Longlong
    Kopciuk, Karen
    Lu, Xuewen
    JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 175
  • [29] Semiparametric estimation methods for the accelerated failure time mixture cure model
    Jiajia Zhang
    Yingwei Peng
    Journal of the Korean Statistical Society, 2012, 41 : 415 - 422
  • [30] Semiparametric estimation methods for the accelerated failure time mixture cure model
    Zhang, Jiajia
    Peng, Yingwei
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2012, 41 (03) : 415 - 422