Induced smoothing for the semiparametric accelerated failure time model: asymptotics and extensions to clustered data

被引:54
|
作者
Johnson, Lynn M. [1 ]
Strawderman, Robert L. [2 ]
机构
[1] Cornell Univ, Dept Stat Sci, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Biol Stat & Computat Biol, Ithaca, NY 14853 USA
基金
美国国家卫生研究院;
关键词
Censoring; Convex optimization; Multivariate survival data; Rank regression; LINEAR-REGRESSION ANALYSIS; RANK REGRESSION;
D O I
10.1093/biomet/asp025
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper extends the induced smoothing procedure of Brown & Wang (2006) for the semiparametric accelerated failure time model to the case of clustered failure time data. The resulting procedure permits fast and accurate computation of regression parameter estimates and standard errors using simple and widely available numerical methods, such as the Newton-Raphson algorithm. The regression parameter estimates are shown to be strongly consistent and asymptotically normal; in addition, we prove that the asymptotic distribution of the smoothed estimator coincides with that obtained without the use of smoothing. This establishes a key claim of Brown & Wang (2006) for the case of independent failure time data and also extends such results to the case of clustered data. Simulation results show that these smoothed estimates perform as well as those obtained using the best available methods at a fraction of the computational cost.
引用
收藏
页码:577 / 590
页数:14
相关论文
共 50 条
  • [1] Semiparametric Accelerated Failure Time Mixture Cure Model for Clustered Data
    Zhang, Dongfang
    Chen, Min
    GENETIC EPIDEMIOLOGY, 2019, 43 (07) : 922 - 922
  • [2] Marginal semiparametric accelerated failure time cure model for clustered survival data
    Niu, Yi
    Fan, Duze
    Ding, Jie
    Peng, Yingwei
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2025, 34 (01) : 150 - 169
  • [3] Induced smoothing for the semiparametric accelerated hazards model
    Li, Haifen
    Zhang, Jiajia
    Tang, Yincai
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (12) : 4312 - 4319
  • [4] A smoothing expectation and substitution algorithm for the semiparametric accelerated failure time frailty model
    Johnson, Lynn M.
    Strawderman, Robert L.
    STATISTICS IN MEDICINE, 2012, 31 (21) : 2335 - 2358
  • [5] Semiparametric smoothing of discrete failure time data
    Patil, Prakash N.
    Bagkavos, Dimitrios
    BIOMETRICAL JOURNAL, 2012, 54 (01) : 5 - 19
  • [6] Semiparametric additive frailty hazard model for clustered failure time data
    Liu, Peng
    Song, Shanshan
    Zhou, Yong
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (02): : 549 - 571
  • [7] Semiparametric regression analysis for clustered failure time data
    Cai, T
    Wei, LJ
    Wilcox, M
    BIOMETRIKA, 2000, 87 (04) : 867 - 878
  • [8] Semiparametric Frailty Models for Clustered Failure Time Data
    Yu, Zhangsheng
    Lin, Xihong
    Tu, Wanzhu
    BIOMETRICS, 2012, 68 (02) : 429 - 436
  • [9] ASYMPTOTIC THEORY FOR THE SEMIPARAMETRIC ACCELERATED FAILURE TIME MODEL WITH MISSING DATA
    Nan, Bin
    Kalbfleisch, John D.
    Yu, Menggang
    ANNALS OF STATISTICS, 2009, 37 (5A): : 2351 - 2376
  • [10] Semiparametric accelerated failure time model for the analysis of right censored data
    Jin, Zhezhen
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2016, 23 (06) : 467 - 478