Donor unit effect on DPP based organic field-effect transistor performance

被引:14
|
作者
Takaya, Tomotsugu [1 ]
Mamo, Melaku Dereje [2 ]
Karakawa, Makoto [1 ,3 ]
Noh, Yong-Young [2 ]
机构
[1] Kanazawa Univ, Grad Sch Nat Sci & Technol, Kakuma Machi, Kanazawa, Ishikawa 9201192, Japan
[2] Dongguk Univ, Dept Energy & Mat Engn, 30 Pildong Ro,1 Gil, Seoul 04620, South Korea
[3] Kanazawa Univ, Inst Frontier Sci Initiat, Kanazawa, Ishikawa 9201192, Japan
关键词
Organic field-effect transistors; Diketopyrrolopyrrole; Conjugated polymers; Donor units; Charge transport; THIN-FILM TRANSISTORS; RANDOM COPOLYMERS; GATE DIELECTRICS; HIGH HOLE; POLYMER; MOBILITY; ELECTRONICS;
D O I
10.1016/j.dyepig.2018.05.062
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
We report diketopyrrolopyrrole (DPP) based copolymers, poly (diketopyrrolopyrrole-cyclopentadithiophene) (PDPPTT-CPDT) and poly(diketopyrrolopyrrolebenzo[1,2-b:4,5-b']dithiophene) (PDPPTT-BDT) to investigate donor unit structure effects on organic field-effect transistor (OFET) performance. The highest occupied molecular orbital (HOMO) level and copolymer band gap were tuned by introducing different donor units on the acceptor DPP backbone. PDPPTT-BDT OFETs show 10 fold higher hole field-effect mobility, up to 0.08 cm(2) V-1 s(-1), than PDPPTT-CPDT OFETs due to better crystallinity and higher HOMO energetic levels. PDPPTT-CPDT and PDPPTT-BDT were operationally stable with negligible threshold voltage shift after cycling.
引用
收藏
页码:306 / 311
页数:6
相关论文
共 50 条
  • [1] Effect of donor units in methylated DPP-based polymers on performance of organic field-effect transistors
    Kim, Hee Su
    Long, Dang
    Noh, Yong-Young
    Hwang, Do-Hoon
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (39) : 10464 - 10471
  • [2] Diketopyrrolopyrrole (DPP)-Based Polymers and Their Organic Field-Effect Transistor Applications: A Review
    Cheon, Hyung Jin
    An, Tae Kyu
    Kim, Yun-Hi
    [J]. MACROMOLECULAR RESEARCH, 2022, 30 (02) : 71 - 84
  • [3] Diketopyrrolopyrrole (DPP)-Based Polymers and Their Organic Field-Effect Transistor Applications: A Review
    Hyung Jin Cheon
    Tae Kyu An
    Yun-Hi Kim
    [J]. Macromolecular Research, 2022, 30 : 71 - 84
  • [4] Ambipolar organic field-effect transistor based on an organic heterostructure
    [J]. Rost, C. (cro@zurich.ibm.com), 1600, American Institute of Physics Inc. (95):
  • [5] Ambipolar organic field-effect transistor based on an organic heterostructure
    Rost, C
    Gundlach, DJ
    Karg, S
    Riess, W
    [J]. JOURNAL OF APPLIED PHYSICS, 2004, 95 (10) : 5782 - 5787
  • [6] Theory of the organic field-effect transistor
    Horowitz, G
    Hajlaoui, R
    Bourguiga, R
    Hajlaoui, M
    [J]. SYNTHETIC METALS, 1999, 101 (1-3) : 401 - 404
  • [7] Organic metal engineering for enhanced field-effect transistor performance
    Pfattner, Raphael
    Rovira, Concepcio
    Mas-Torrent, Marta
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (40) : 26545 - 26552
  • [8] IMPROVED PERFORMANCE OF A FIELD-EFFECT TRANSISTOR
    MUZUMDAR, P
    MIRCHANDANI, K
    TRUSELL, F
    DROZNIN, V
    MILSHTEIN, S
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 1990, 8 (04) : 357 - 359
  • [9] Noncoplanar organic field-effect transistor based on copper phthalocyanine
    Di, CA
    Yu, G
    Liu, YQ
    Xu, XJ
    Song, YB
    Wang, Y
    Sun, YM
    Zhu, DB
    Liu, HM
    Liu, XY
    Wu, DX
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (12)
  • [10] Organic field-effect transistor based on biphenyl substituted TTF
    Noda, B
    Katsuhara, M
    Aoyagi, I
    Mori, T
    Taguchi, T
    [J]. CHEMISTRY LETTERS, 2005, 34 (03) : 392 - 393