One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance

被引:54
|
作者
Ali, Gomaa A. M. [1 ,2 ]
Yusoff, Mashitah M. [1 ]
Algarni, H. [3 ,4 ]
Chong, Kwok Feng [1 ]
机构
[1] Univ Malaysia Pahang, Fac Ind Sci & Technol, Gambang 26300, Pahang, Malaysia
[2] Al Azhar Univ, Chem Dept, Fac Sci, Assiut 71524, Egypt
[3] King Khalid Univ, RCAMS, POB 9004, Abha 61413, Saudi Arabia
[4] King Khalid Univ, Fac Sci, Dept Phys, POB 9004, Abha, Saudi Arabia
关键词
Manganese oxide; Energy storage; Supercapacitors; Electron transfer; Graphene; REDUCED GRAPHENE OXIDE; SUPERCAPACITOR ELECTRODES; MN3O4; NANOPARTICLES; REDOX REACTION; COMPOSITE; CARBON; NANOSPHERES; TEMPERATURE; NANOSHEETS; SURFACE;
D O I
10.1016/j.ceramint.2018.01.212
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present a facile one-step electrochemical approach to generate MnO2/rGO nanocomposite from a mixture of Mn3O4 and graphene oxide (GO). The electrochemical conversion of Mn3O4 into MnO2 through potential cycling is expedited in the presence of GO while the GO is reduced into reduced graphene oxide (rGO). The MnO2 nanoparticles are evenly distributed on the rGO nanosheets and act as the spacer to prevent rGO nanosheets from restacking. This unique structure provides high electroactive surface area (1173 m(2) g(-1)) that improves ions diffusion within the MnO2/rGO structure. As a result, the MnO2/rGO nanocomposite exhibits high specific capacitance of 473 F g(-1) at 0.25 A g(-1), which is remarkably higher (3 times) than the Mn3O4/GO prior conversion. In addition, the electrosynthesized nanocomposite shows higher conductivity and excellent potential cycling stability of 95% at 2000 cycles.
引用
收藏
页码:7799 / 7807
页数:9
相关论文
共 50 条
  • [41] Controllable synthesis of MnO2/polyaniline nanocomposite and its electrochemical capacitive property
    Meng, Fanhui
    Yan, Xiuling
    Zhu, Ye
    Si, Pengchao
    NANOSCALE RESEARCH LETTERS, 2013, 8 : 1 - 8
  • [42] One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity
    Wang, Ping
    Wang, Jin
    Wang, Xuefei
    Yu, Huogen
    Yu, Jiaguo
    Lei, Ming
    Wang, Yonggang
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 132 : 452 - 459
  • [43] MnO2/Poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage
    Liu, Ran
    Lee, Sang Bok
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (10) : 2942 - 2943
  • [44] One-step hydrothermal synthesis of GQDs-MoS2 nanocomposite with enhanced supercapacitive performance
    Moghimian, Sara
    Sangpour, Parvaneh
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2020, 50 (01) : 71 - 79
  • [45] One-step hydrothermal synthesis of GQDs-MoS2 nanocomposite with enhanced supercapacitive performance
    Sara Moghimian
    Parvaneh Sangpour
    Journal of Applied Electrochemistry, 2020, 50 : 71 - 79
  • [46] Synthesis of Copper-Doped MnO2 Electrode Materials by One-Step Hydrothermal Method for High Performance
    An, Dongxia
    Zhang, Yu
    Zhang, Hong
    Ma, Gang
    Zhang, Cuimiao
    Ma, Zhiguang
    ACTA CHIMICA SLOVENICA, 2019, 66 (03) : 584 - 591
  • [47] Enhanced electrochemical performance of acicular MnO2 by adding conductive additive
    Liang, Xinghua
    Hua, Xiaoming
    Liu, Yusi
    Zeng, Shuaibo
    Chen, Haiyan
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2014, 16 (7-8): : 788 - 792
  • [48] Hierarchical Design of rGO-PEDOT- δ-MnO2 Nanocomposite for Supercapacitors
    Sen, Pintu
    Rana, Subhasis
    De, Amitabha
    JOURNAL OF ELECTRONIC MATERIALS, 2020, 49 (01) : 763 - 772
  • [49] Hierarchical MnO2 Located on Carbon Nanotubes for Enhanced Electrochemical Performance
    Li, Shaohui
    Gao, Lin
    Wang, Lichuan
    Wang, Mingkui
    Shen, Yan
    CHEMELECTROCHEM, 2018, 5 (11): : 1525 - 1531
  • [50] Hierarchical Design of rGO-PEDOT- δ-MnO2 Nanocomposite for Supercapacitors
    Pintu Sen
    Subhasis Rana
    Amitabha De
    Journal of Electronic Materials, 2020, 49 : 763 - 772