Classification scheme for sedimentary and igneous rocks in Gale crater, Mars

被引:42
|
作者
Mangold, N. [1 ]
Schmidt, M. E. [2 ]
Fisk, M. R. [3 ]
Forni, O. [4 ]
McLennan, S. M. [5 ]
Ming, D. W. [6 ]
Sautter, V. [7 ]
Sumner, D. [8 ]
Williams, A. J. [9 ]
Clegg, S. M. [10 ]
Cousin, A. [4 ]
Gasnault, O. [4 ]
Gellert, R. [11 ]
Grotzinger, J. P. [12 ]
Wiens, R. C. [10 ]
机构
[1] Univ Nantes, CNRS, LPG Nantes, F-44322 Nantes, France
[2] Brock Univ, Dept Earth Sci, St Catharines, ON, Canada
[3] Oregon State Univ, Corvallis, OR 97331 USA
[4] Univ Toulouse, UPS OMP, CNRS, Inst Rech Astrophys & Planetol, Toulouse, France
[5] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA
[6] NASA, Johnson Space Ctr, Houston, TX 77058 USA
[7] Museum Natl Hist Nat, IMPMC, Paris, France
[8] Univ Calif Davis, Davis, CA 95616 USA
[9] Towson Univ, Towson, MD USA
[10] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[11] Univ Guelph, Guelph, ON N1G 2W1, Canada
[12] CALTECH, Pasadena, CA 91125 USA
关键词
SCIENCE LABORATORY MISSION; CHEMCAM INSTRUMENT SUITE; CHEMICAL CLASSIFICATION; CURIOSITY ROVER; CRUST; CONSTRAINTS; CALIBRATION; MINERALOGY; DIVERSITY; SYSTEM;
D O I
10.1016/j.icarus.2016.11.005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Rocks analyzed by the Curiosity rover in Gale crater include a variety of clastic sedimentary rocks and igneous float rocks transported by fluvial and impact processes. To facilitate the discussion of the range of lithologies, we present in this article a petrological classification framework adapting terrestrial classification schemes to Mars compositions (such as Fe abundances typically higher than for comparable lithologies on Earth), to specific Curiosity observations (such as common alkali-rich rocks), and to the capabilities of the rover instruments. Mineralogy was acquired only locally for a few drilled rocks, and so it does not suffice as a systematic classification tool, in contrast to classical terrestrial rock classification. The core of this classification involves (1) the characterization of rock texture as sedimentary, igneous or undefined according to grain/crystal sizes and shapes using imaging from the ChemCam Remote Micro Imager (RMI), Mars Hand Lens Imager (MAHLI) and Mastcam instruments, and (2) the assignment of geochemical modifiers based on the abundances of Fe, Si, alkali, and S determined by the Alpha Particle X-ray Spectrometer (APXS) and ChemCam instruments. The aims are to help understand Gale crater geology by highlighting the various categories of rocks analyzed by the rover. Several implications are proposed from the cross-comparisons of rocks of various texture and composition, for instance between in place outcrops and float rocks. All outcrops analyzed by the rover are sedimentary; no igneous outcrops have been observed. However, some igneous rocks are clasts in conglomerates, suggesting that part of them are derived from the crater rim. The compositions of in-place sedimentary rocks contrast significantly with the compositions of igneous float rocks. While some of the differences between sedimentary rocks and igneous floats may be related to physical sorting and diagenesis of the sediments, some of the sedimentary rocks (e.g., potassic rocks) cannot be paired with any igneous rocks analyzed so far. In contrast, many float rocks, which cannot be classified from their poorly defined texture, plot on chemistry diagrams close to float rocks defined as igneous from their textures, potentially constraining their nature. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [31] A cold hydrological system in Gale crater, Mars
    Fairen, Alberto G.
    Stokes, Chris R.
    Davies, Neil S.
    Schulze-Makuch, Dirk
    Rodriguez, J. Alexis P.
    Davila, Alfonso F.
    Uceda, Esther R.
    Dohm, James M.
    Baker, Victor R.
    Clifford, Stephen M.
    Mckay, Christopher P.
    Squyres, Steven W.
    [J]. PLANETARY AND SPACE SCIENCE, 2014, 93-94 : 101 - 118
  • [32] The timing of alluvial activity in Gale crater, Mars
    Grant, John A.
    Wilson, Sharon A.
    Mangold, Nicolas
    Calef, Fred, III
    Grotzinger, John P.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (04) : 1142 - 1148
  • [33] Gypsum, bassanite, and anhydrite at Gale crater, Mars
    Vaniman, David T.
    Martinez, German M.
    Rampe, Elizabeth B.
    Bristow, Thomas F.
    Blake, David F.
    Yen, Albert S.
    Ming, Douglas W.
    Rapin, William
    Meslin, Pierre-Yves
    Morookian, John Michael
    Downs, Robert T.
    Chipera, Steve J.
    Morris, Richard V.
    Morrison, Shaunna M.
    Treiman, Allan H.
    Achilles, Cherie N.
    Robertson, Kevin
    Grotzinger, John P.
    Hazen, Robert M.
    Wiens, Roger C.
    Sumner, Dawn Y.
    [J]. AMERICAN MINERALOGIST, 2018, 103 (07) : 1011 - 1020
  • [34] Aeolian bedrock ridges in Gale crater, Mars
    Bretzfelder, Jordan M.
    Stack, Kathryn M.
    Fraeman, Abigail A.
    Day, Mackenzie
    Dietrich, William E.
    Bryk, Alexander B.
    [J]. ICARUS, 2024, 408
  • [35] In Situ Analysis of Opal in Gale Crater, Mars
    Rapin, W.
    Chauvire, B.
    Gabriel, T. S. J.
    McAdam, A. C.
    Ehlmann, B. L.
    Hardgrove, C.
    Meslin, P. -Y.
    Rondeau, B.
    Dehouck, E.
    Franz, H. B.
    Mangold, N.
    Chipera, S. J.
    Wiens, R. C.
    Frydenvang, J.
    Schroeder, S.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2018, 123 (08) : 1955 - 1972
  • [36] Mars methane detection and variability at Gale crater
    Webster, Christopher R.
    Mahaffy, Paul R.
    Atreya, Sushil K.
    Flesch, Gregory J.
    Mischna, Michael A.
    Meslin, Pierre-Yves
    Farley, Kenneth A.
    Conrad, Pamela G.
    Christensen, Lance E.
    Pavlov, Alexander A.
    Martin-Torres, Javier
    Zorzano, Maria-Paz
    McConnochie, Timothy H.
    Owen, Tobias
    Eigenbrode, Jennifer L.
    Glavin, Daniel P.
    Steele, Andrew
    Malespin, Charles A.
    Archer, P. Douglas, Jr.
    Sutter, Brad
    Coll, Patrice
    Freissinet, Caroline
    McKay, Christopher P.
    Moores, John E.
    Schwenzer, Susanne P.
    Bridges, John C.
    Navarro-Gonzalez, Rafael
    Gellert, Ralf
    Lemmon, Mark T.
    [J]. SCIENCE, 2015, 347 (6220) : 415 - 417
  • [37] Ries impact crater sedimentary conglomerates: Sedimentary particle 'impact pre-processing', transport distances and provenance, and implications for Gale crater conglomerates, Mars
    Arp, Gernot
    Schultz, Sebastian
    Karius, Volker
    Head, James W., III
    [J]. ICARUS, 2019, 321 : 531 - 549
  • [38] Impact generated porosity in Gale crater and implications for the density of sedimentary rocks in lower Aeolis Mons
    Johnson, B. C.
    Milliken, R. E.
    Lewis, K. W.
    Collins, G. S.
    [J]. ICARUS, 2021, 366
  • [39] Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars
    Stern, Jennifer C.
    Sutter, Brad
    Freissinet, Caroline
    Navarro-Gonzalez, Rafael
    McKay, Christopher P.
    Archer, P. Douglas, Jr.
    Buch, Arnaud
    Brunner, Anna E.
    Coll, Patrice
    Eigenbrode, Jennifer L.
    Fairen, Alberto G.
    Franz, Heather B.
    Glavin, Daniel P.
    Kashyap, Srishti
    McAdam, Amy C.
    Ming, Douglas W.
    Steele, Andrew
    Szopa, Cyril
    Wray, James J.
    Martin-Torres, F. Javier
    Zorzano, Maria-Paz
    Conrad, Pamela G.
    Mahaffy, Paul R.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (14) : 4245 - 4250
  • [40] Ancient Winds, Waves, and Atmosphere in Gale Crater, Mars, Inferred From Sedimentary Structures and Wave Modeling
    Rubin, D. M.
    Lapotre, M. A. G.
    Stevens, A. W.
    Lamb, M. P.
    Fedo, C. M.
    Grotzinger, J. P.
    Gupta, S.
    Stack, K. M.
    Vasavada, A. R.
    Banham, S. G.
    Bryk, A. B.
    Caravaca, G.
    Christian, J. R.
    Edgar, L. A.
    Malin, M. C.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2022, 127 (04)