New interval methods for constrained global optimization

被引:35
|
作者
Markót, MC
Fernández, J
Casado, LG
Csendes, T
机构
[1] Univ Szeged, Res Grp Artificial Intelligence, Hungarian Acad Sci, Szeged, Hungary
[2] European Space Agcy, ESTEC, Adv Concepts Team, EUIP, NL-2201 AZ Noordwijk, Netherlands
[3] Univ Murcia, Dept Stat & Operat Res, E-30001 Murcia, Spain
[4] Univ Almeria, Dept Comp Architecture & Elect, Almeria, Spain
[5] Univ Szeged, Inst Informat, Szeged, Hungary
关键词
global optimization; inequality constrained problems; interval analysis; adaptive multisection; subinterval selection criterion; computational study;
D O I
10.1007/s10107-005-0607-2
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Interval analysis is a powerful tool which allows to design branch-and-bound algorithms able to solve many global optimization problems. In this paper we present new adaptive multisection rules which enable the algorithm to choose the proper multisection type depending on simple heuristic decision rules. Moreover, for the selection of the next box to be subdivided, we investigate new criteria. Both the adaptive multisection and the subinterval selection rules seem to be specially suitable for being used in inequality constrained global optimization problems. The usefulness of these new techniques is shown by computational studies.
引用
收藏
页码:287 / 318
页数:32
相关论文
共 50 条
  • [31] DETERMINISTIC METHODS IN CONSTRAINED GLOBAL OPTIMIZATION - SOME RECENT ADVANCES AND NEW FIELDS OF APPLICATION
    HORST, R
    NAVAL RESEARCH LOGISTICS, 1990, 37 (04) : 433 - 471
  • [32] An Interval Filtering Operator for Upper and Lower Bounding in Constrained Global Optimization
    Sans, Olivier
    Coletta, Remi
    Trombettoni, Gilles
    2016 IEEE 28TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2016), 2016, : 218 - 225
  • [33] New hybrid method for constrained global optimization
    Beijing Inst of Technology, Beijing, China
    J Beijing Inst Technol Engl Lang Iss, 1 (7-16):
  • [34] Convergence properties of augmented Lagrangian methods for constrained global optimization
    Luo, Hezhi
    Sun, Xiaoling
    Wu, Huixian
    OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (05): : 763 - 778
  • [35] On Numerical Methods for Black-Box Constrained Global Optimization
    Kvasov, Dmitri E.
    Grishagin, Vladimir A.
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [36] Unified theory of augmented Lagrangian methods for constrained global optimization
    Wang, Chang-Yu
    Li, Duan
    JOURNAL OF GLOBAL OPTIMIZATION, 2009, 44 (03) : 433 - 458
  • [37] Unified theory of augmented Lagrangian methods for constrained global optimization
    Chang-Yu Wang
    Duan Li
    Journal of Global Optimization, 2009, 44
  • [38] Advances in Interval Methods for Deterministic Global Optimization in Chemical Engineering
    Y. Lin
    M.A. Stadtherr
    Journal of Global Optimization, 2004, 29 : 281 - 296
  • [39] A review of subdivision direction selection in interval methods for global optimization
    Csendes, T
    Ratz, D
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 319 - 322
  • [40] Advances in interval methods for deterministic global optimization in chemical engineering
    Lin, Y
    Stadtherr, MA
    JOURNAL OF GLOBAL OPTIMIZATION, 2004, 29 (03) : 281 - 296