THE COMPUTATION OF LOW MULTILINEAR RANK APPROXIMATIONS OF TENSORS VIA POWER SCHEME AND RANDOM PROJECTION

被引:31
|
作者
Che, Maolin [1 ]
Wei, Yimin [2 ,3 ]
Yan, Hong [4 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Econ Math, Chengdu 611130, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
[4] City Univ Hong Kong, Dept Elect Engn, Kowloon, 83 Tat Chee Ave, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
randomized algorithms; random projection; low multilinear rank approximation; random sub-Gaussian matrices; power scheme; singular values; singular value decomposition; SMALLEST SINGULAR-VALUE; ALGORITHMS; TUCKER; DECOMPOSITION; FACTORIZATIONS; REDUCTION;
D O I
10.1137/19M1237016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the computation of low multilinear rank approximations of tensors. Combining the stretegy of power scheme, random projection, and singular value decomposition, we derive a three-stage randomized algorithm for the low multilinear rank approximation. Based on the singular values of sub-Gaussian matrices, we derive the error bound of the proposed algorithm with high probability. We illustrate the proposed algorithms via several numerical examples.
引用
收藏
页码:605 / 636
页数:32
相关论文
共 50 条
  • [31] Convergence rate analysis for the higher order power method in best rank one approximations of tensors
    Hu, Shenglong
    Li, Guoyin
    NUMERISCHE MATHEMATIK, 2018, 140 (04) : 993 - 1031
  • [32] Tracking online low-rank approximations of higher-order incomplete streaming tensors
    Thanh, Le Trung
    Abed-Meraim, Karim
    Trung, Nguyen Linh
    Hafiane, Adel
    PATTERNS, 2023, 4 (06):
  • [33] FAST COMPUTATION OF GAUSSIAN LIKELIHOODS USING LOW-RANK MATRIX APPROXIMATIONS
    Gajjar, Mrugesh R.
    Sreenivas, T. V.
    Govindarajan, R.
    2011 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS), 2011, : 322 - 327
  • [34] Computation of moments for Maxwell's equations with random interfaces via pivoted low-rank approximation
    Hao, Yongle
    Kang, Fengdai
    Li, Jingzhi
    Zhang, Kai
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 371 : 1 - 19
  • [35] FAST AND STABLE RECOVERY OF APPROXIMATELY LOW MULTILINEAR RANK TENSORS FROM MULTI-WAY COMPRESSIVE MEASUREMENTS
    Caiafa, Cesar F.
    Cichocki, Andrzej
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [36] A Modified Particle Swarm Optimization Algorithm for the Best Low Multilinear Rank Approximation of Higher-Order Tensors
    Borckmans, Pierre B.
    Ishteva, Mariya
    Absil, Pierre-Antoine
    SWARM INTELLIGENCE, 2010, 6234 : 13 - 23
  • [37] Low-Rank Projection Learning via Graph Embedding
    Liang, Yingyi
    You, Lei
    Lu, Xiaohuan
    He, Zhenyu
    Wang, Hongpeng
    NEUROCOMPUTING, 2019, 348 : 97 - 106
  • [38] Randomized Low-Rank Approximations beyond Gaussian Random Matrices\ast
    Saibaba, Arvind K.
    Miedlar, Agnieszka
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2025, 7 (01): : 136 - 162
  • [39] Low Rank Matrix Completion via Random Sampling
    Guldas, Hakan
    Cemgil, Ali Taylan
    2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [40] Generalized Matrix Local Low Rank Representation by Random Projection and Submatrix Propagation
    Dang, Pengtao
    Zhu, Haiqi
    Guo, Tingbo
    Wan, Changlin
    Zhao, Tong
    Salama, Paul
    Wang, Yijie
    Cao, Sha
    Zhang, Chi
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 390 - 401