THE COMPUTATION OF LOW MULTILINEAR RANK APPROXIMATIONS OF TENSORS VIA POWER SCHEME AND RANDOM PROJECTION

被引:31
|
作者
Che, Maolin [1 ]
Wei, Yimin [2 ,3 ]
Yan, Hong [4 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Econ Math, Chengdu 611130, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
[4] City Univ Hong Kong, Dept Elect Engn, Kowloon, 83 Tat Chee Ave, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
randomized algorithms; random projection; low multilinear rank approximation; random sub-Gaussian matrices; power scheme; singular values; singular value decomposition; SMALLEST SINGULAR-VALUE; ALGORITHMS; TUCKER; DECOMPOSITION; FACTORIZATIONS; REDUCTION;
D O I
10.1137/19M1237016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the computation of low multilinear rank approximations of tensors. Combining the stretegy of power scheme, random projection, and singular value decomposition, we derive a three-stage randomized algorithm for the low multilinear rank approximation. Based on the singular values of sub-Gaussian matrices, we derive the error bound of the proposed algorithm with high probability. We illustrate the proposed algorithms via several numerical examples.
引用
收藏
页码:605 / 636
页数:32
相关论文
共 50 条
  • [1] Randomized algorithms for the low multilinear rank approximations of tensors
    Che, Maolin
    Wei, Yimin
    Yan, Hong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 390 (390)
  • [2] Random Projections for Low Multilinear Rank Tensors
    Navasca, Carmeliza
    Pompey, Deonnia N.
    VISUALIZATION AND PROCESSING OF HIGHER ORDER DESCRIPTORS FOR MULTI-VALUED DATA, 2015, : 93 - 106
  • [3] Robust Multilinear Decomposition of Low Rank Tensors
    Han, Xu
    Albera, Laurent
    Kachenoura, Amar
    Shu, Huazhong
    Senhadji, Lotfi
    LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION (LVA/ICA 2018), 2018, 10891 : 3 - 12
  • [4] A novel computational scheme for low multi-linear rank approximations of tensors
    Shekhawat, Hanumant Singh
    Weiland, Siep
    2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 3003 - 3008
  • [5] FAST LOW RANK APPROXIMATIONS OF MATRICES AND TENSORS
    Friedland, S.
    Mehrmann, V.
    Miedlar, A.
    Nkengla, M.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2011, 22 : 1031 - 1048
  • [6] Singular Value Decompositions and Low Rank Approximations of Tensors
    Weiland, Siep
    van Belzen, Femke
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) : 1171 - 1182
  • [7] Randomized algorithms for the computation of multilinear rank-(μ1,μ2,μ3) approximations
    Che, Maolin
    Wei, Yimin
    Xu, Yanwei
    JOURNAL OF GLOBAL OPTIMIZATION, 2023, 87 (2-4) : 373 - 403
  • [8] Canonical polyadic decomposition (CPD) of big tensors with low multilinear rank
    Yichun Qiu
    Guoxu Zhou
    Yu Zhang
    Andrzej Cichocki
    Multimedia Tools and Applications, 2021, 80 : 22987 - 23007
  • [9] Low Multilinear Rank Approximation of Tensors and Application in Missing Traffic Data
    Tan, Huachun
    Feng, Jianshuai
    Chen, Zhengdong
    Yang, Fan
    Wang, Wuhong
    ADVANCES IN MECHANICAL ENGINEERING, 2014,
  • [10] Canonical polyadic decomposition (CPD) of big tensors with low multilinear rank
    Qiu, Yichun
    Zhou, Guoxu
    Zhang, Yu
    Cichocki, Andrzej
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (15) : 22987 - 23007