Parameter estimation of lithium-ion batteries and noise reduction using an H∞ filter

被引:14
|
作者
Yang, Woo-Joo [1 ]
Yu, Duk-Hyun [1 ]
Kim, Young-Bae [1 ]
机构
[1] Chonnam Natl Univ, Dept Mech Engn, Kwangju 500757, South Korea
基金
新加坡国家研究基金会;
关键词
Estimation covariance; H-infinity filter; Lithium-ion battery; State-of-charge; Kalman filter; STATE-OF-CHARGE; HYBRID-ELECTRIC VEHICLES; LEAD-ACID-BATTERIES; MANAGEMENT-SYSTEMS; KALMAN FILTER; PART; MODEL; PACKS; POWER; IDENTIFICATION;
D O I
10.1007/s12206-012-1203-z
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Lithium-ion batteries are widely used in conventional hybrid vehicles and in some electrical devices. A lumped parameter model of lithium-ion battery is constructed and system parameters are identified by using the autoregressive moving average (ARMA) and a genetic algorithm (GA). The precise information of state-of-charge (SOC) and terminal voltage are required to prolong the battery life and to increase the battery performance, reliability, and economics. By assuming a priori knowledge of the process and measurement noise covariance values, Kalman filter or extended Kalman filter has been used to estimate the SOC and terminal voltage. However, the main drawbacks of the Kalman filter is to use correct a priori covariance values, otherwise, the estimation errors can be lager or even divergent. These estimation errors can be relaxed by using the H-a filter, which does not make any assumptions about the noise, and it minimizes the worst case estimation error. In this paper, H-a filter is used to estimate the SOC and terminal voltage. The H-a filter can reduce SOC estimation error, making it more reliable than using a priori process and measurement noise covariance values.
引用
收藏
页码:247 / 256
页数:10
相关论文
共 50 条
  • [1] Parameter estimation of lithium-ion batteries and noise reduction using an H∞ filter
    Woo-Joo Yang
    Duk-Hyun Yu
    Young-Bae Kim
    Journal of Mechanical Science and Technology, 2013, 27 : 247 - 256
  • [2] Impedance Analysis and Parameter Estimation of Lithium-Ion Batteries Using the EIS Technique
    Nunes, Hugo
    Martinho, Joao
    Fermeiro, Joao
    Pombo, Jose
    Mariano, Silvio
    do Rosario Calado, Maria
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2024, 60 (03) : 5048 - 5060
  • [3] Simultaneous state and logarithmic parameter estimation of lithium-ion batteries using UKF
    Baba, Atsushi
    Adachi, Shuichi
    IEEJ Transactions on Industry Applications, 2013, 133 (12) : 1139 - 1147
  • [4] Capacity Estimation for Lithium-ion Batteries Using Adaptive Filter on Affine Space
    Wada, Toshihiro
    Takegami, Tounold
    Wang, Yebin
    Sahinoglu, Zafer
    2015 10TH ASIAN CONTROL CONFERENCE (ASCC), 2015,
  • [5] An Adaptive Central Difference H-infinity Filter Based SOC Estimation for Lithium-ion Batteries with Measurement Noise
    Da, Yangyang
    Wan, Youhong
    He, Weiwei
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 1402 - 1407
  • [6] A hybrid Kalman filter for SOC estimation of lithium-ion batteries
    Hao, Tianyun
    Ding, Jie
    Tu, Taotao
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 5222 - 5227
  • [7] Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models
    Ramadesigan, Venkatasailanathan
    Chen, Kejia
    Burns, Nancy A.
    Boovaragavan, Vijayasekaran
    Braatz, Richard D.
    Subramanian, Venkat R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (09) : A1048 - A1054
  • [8] State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter
    Xia, Bizhong
    Wang, Haiqing
    Tian, Yong
    Wang, Mingwang
    Sun, Wei
    Xu, Zhihui
    ENERGIES, 2015, 8 (06): : 5916 - 5936
  • [9] A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter
    Shichun Yang
    Sida Zhou
    Yang Hua
    Xinan Zhou
    Xinhua Liu
    Yuwei Pan
    Heping Ling
    Billy Wu
    Scientific Reports, 11
  • [10] Stable and Accurate Estimation of SOC Using eXogenous Kalman Filter for Lithium-Ion Batteries
    Lin, Qizhe
    Li, Xiaoqi
    Tu, Bicheng
    Cao, Junwei
    Zhang, Ming
    Xiang, Jiawei
    SENSORS, 2023, 23 (01)