High-Order Local Spatial Context Modeling by Spatialized Random Forest

被引:10
|
作者
Ni, Bingbing [1 ]
Yan, Shuicheng [2 ]
Wang, Meng [3 ]
Kassim, Ashraf A. [2 ]
Tian, Qi [4 ]
机构
[1] Adv Digital Sci Ctr, Singapore 138632, Singapore
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
[3] Hefei Univ Technol, Hefei 230009, Peoples R China
[4] Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Object classification; random forest; spatial context; visual codebook; TEXTURE CLASSIFICATION; RECOGNITION; SCALE; FEATURES;
D O I
10.1109/TIP.2012.2222895
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel method for spatial context modeling toward boosting visual discriminating power. We are particularly interested in how to model high-order local spatial contexts instead of the intensively studied second-order spatial contexts, i.e., co-occurrence relations. Motivated by the recent success of random forest in learning discriminative visual codebook, we present a spatialized random forest (SRF) approach, which can encode an unlimited length of high-order local spatial contexts. By spatially random neighbor selection and random histogram-bin partition during the tree construction, the SRF can explore much more complicated and informative local spatial patterns in a randomized manner. Owing to the discriminative capability test for the random partition in each tree node's split process, a set of informative high-order local spatial patterns are derived, and new images are then encoded by counting the occurrences of such discriminative local spatial patterns. Extensive comparison experiments on face recognition and object/scene classification clearly demonstrate the superiority of the proposed spatial context modeling method over other state-of-the-art approaches for this purpose.
引用
收藏
页码:739 / 751
页数:13
相关论文
共 50 条
  • [31] THE EVOLUTION OF THE SPECTRA OF HIGH-ORDER NONLINEAR RANDOM WAVES
    GURBATOV, SN
    MALAKHOV, AN
    PRONCHATOVRUBTSOV, NV
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA, 1986, 29 (06): : 691 - 697
  • [32] High-order context modeling and embedded conditional entropy coding of wavelet coefficients for image compression
    Wu, XL
    THIRTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1998, : 1378 - 1382
  • [33] High-order time discretizations in seismic modeling
    Chen, Jing-Bo
    GEOPHYSICS, 2007, 72 (05) : SM115 - SM122
  • [34] Modeling of high-order overtone molecular vibrations
    Gavva S.P.
    Russian Physics Journal, 2005, 48 (3) : 275 - 279
  • [35] High-Order/Low-Order Methods for Ocean Modeling
    Newman, Christopher
    Womeldorff, Geoff
    Chacon, Luis
    Knoll, Dana A.
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 2086 - 2096
  • [36] Fractional Order Modeling of Continuous High-Order MIMO Systems
    Mishra, Sunil Kumar
    Chandra, Dinesh
    2013 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMPUTING AND CONTROL (ISPCC), 2013,
  • [37] Spatial behavior in high-order partial differential equations
    Carme Leseduarte, Mari
    Quintanilla, Ramon
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (06) : 2480 - 2493
  • [38] Spatial pooling of low-order and high-order image statistics
    Victor, J. D.
    Conte, M. M.
    PERCEPTION, 2007, 36 : 45 - 45
  • [39] Spatial phase control and applications of high-order harmonics
    Valentin, C.
    Gautier, J.
    Papalazarou, E.
    Hauri, Ch.
    Rey, G.
    Zeitoun, Ph.
    Sebban, S.
    Hajkova, V.
    Chalupsky, J.
    Vysin, L.
    Juha, L.
    ULTRAFAST PHENOMENA XVI, 2009, 92 : 908 - +
  • [40] Demonstration of a spatial filtering amplifier for high-order harmonics
    Goddet, J. Ph.
    Sebban, S.
    Morlens, A. S.
    Gautier, J.
    Rousseau, J. Ph.
    Burgy, F.
    Zeitoun, Ph.
    Valentin, C.
    Hauri, C.
    Maynard, G.
    Boudaa, A.
    Caumes, J. P.
    Mordji, H.
    Mocek, T.
    Kozlova, M.
    Jakubczak, K.
    OPTICS LETTERS, 2007, 32 (11) : 1498 - 1500