Automatic Selection of Temperature Variables for Short-Term Load Forecasting

被引:1
|
作者
Candela Esclapez, Alfredo [1 ]
Lopez Garcia, Miguel [1 ]
Valero Verdu, Sergio [1 ]
Senabre Blanes, Carolina [1 ]
机构
[1] Miguel Hernandez Univ, Elect Engn Dept, Av Univ, Elche 03202, Spain
关键词
accuracy; interpretability; short-term load forecasting; temperature analysis; temperature processing; NEURAL-NETWORK; MODEL;
D O I
10.3390/su142013339
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Due to the infeasibility of large-scale electrical energy storage, electricity is generated and consumed simultaneously. Therefore, electricity entities need consumption forecasting systems to plan operations and manage supplies. In addition, accurate predictions allow renewable energies on electrical grids to be managed, thereby reducing greenhouse gas emissions. Temperature affects electricity consumption through air conditioning and heating equipment, although it is the consumer's behavior that determines specifically to what extent. This work proposes an automatic method of processing and selecting variables, with a two-fold objective: improving both the accuracy and the interpretability of the overall forecasting system. The procedure has been tested by the predictive system of the Spanish electricity operator (Red Electrica de Espana) with regard to peninsular demand. During the test period, the forecasting error was consistently reduced for the forecasting horizon, with an improvement of 0.16% in MAPE and 59.71 MWh in RMSE. The new way of working with temperatures is interpretable, since they separate the effect of temperature according to location and time. It has been observed that heat has a greater influence than the cold. In addition, on hot days, the temperature of the second previous day has a greater influence than the previous one, while the opposite occurs on cold days.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] The Short-term Load Forecasting of Electric System
    Wang, Zhaoyuan
    Proceedings of the 2016 4th International Conference on Machinery, Materials and Information Technology Applications, 2016, 71 : 438 - 441
  • [42] Short-term Electricity Load Forecasting for Thailand
    Chapagain, Kamal
    Kittipiyakul, Somsak
    2018 15TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY (ECTI-CON), 2018, : 521 - 524
  • [43] Combination model for short-term load forecasting
    School of Information and Electromechanical Engineering, Shanghai Normal University, Shanghai, 0086/Shanghai, China
    Chen, Q. (hellowangchenchen@163.com), 1600, Bentham Science Publishers B.V., P.O. Box 294, Bussum, 1400 AG, Netherlands (05):
  • [44] Fuzzy short-term electric load forecasting
    Al-Kandari, AM
    Soliman, SA
    El-Hawary, ME
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2004, 26 (02) : 111 - 122
  • [45] Data mining for short-term load forecasting
    Mori, H
    Kosemura, N
    Kondo, T
    Numa, K
    2002 IEEE POWER ENGINEERING SOCIETY WINTER MEETING, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2002, : 623 - 624
  • [46] Standardization of Short-Term Load Forecasting Models
    Lopez, M.
    Valero, S.
    Senabre, C.
    Aparicio, J.
    Gabaldon, A.
    2012 9TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET (EEM), 2012,
  • [47] Regional short-term load forecasting for Slovenia
    Kunstelj, Stefan
    Rejc, Matej
    Pantos, Milos
    ELEKTROTEHNISKI VESTNIK-ELECTROCHEMICAL REVIEW, 2014, 81 (04): : 222 - 228
  • [48] Stacking for Probabilistic Short-Term Load Forecasting
    Dudek, Grzegorz
    COMPUTATIONAL SCIENCE, ICCS 2024, PT II, 2024, 14833 : 3 - 18
  • [49] Intelligent short-term load forecasting in Turkey
    Topalli, Ayca Kumluca
    Erkmen, Ismet
    Topalli, Ihsan
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2006, 28 (07) : 437 - 447
  • [50] Short-Term Load Forecasting Methods: A Review
    Srivastava, A. K.
    Pandey, Ajay Shekhar
    Singh, Devender
    2016 INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ELECTRICAL ELECTRONICS & SUSTAINABLE ENERGY SYSTEMS (ICETEESES), 2016, : 130 - 138