Frobenius functors and Gorenstein homological properties

被引:9
|
作者
Chen, Xiao-Wu [1 ]
Ren, Wei [2 ]
机构
[1] Chinese Acad Sci, Univ Sci & Technol China, Sch Math Sci, Key Lab Wu Wen Tsun Math, Hefei 230026, Anhui, Peoples R China
[2] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Frobenius functor; Gorenstein projective object; Gorenstein global dimension; STABLE EQUIVALENCES; CATEGORIES; DIMENSIONS;
D O I
10.1016/j.jalgebra.2022.06.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that any faithful Frobenius functor between abelian categories preserves the Gorenstein projective dimension of objects. Consequently, it preserves and reflects Gorenstein projective objects. We give conditions on when a Frobenius functor preserves the stable categories of Gorenstein projective objects, the singularity categories and the Gorenstein defect categories, respectively. In the appendix, we give a direct proof of the following known result: for an abelian category with enough projectives and injectives, its global Gorenstein projective dimension coincides with its global Gorenstein injective dimension.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:18 / 37
页数:20
相关论文
共 50 条