Frobenius functors and Gorenstein homological properties

被引:9
|
作者
Chen, Xiao-Wu [1 ]
Ren, Wei [2 ]
机构
[1] Chinese Acad Sci, Univ Sci & Technol China, Sch Math Sci, Key Lab Wu Wen Tsun Math, Hefei 230026, Anhui, Peoples R China
[2] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Frobenius functor; Gorenstein projective object; Gorenstein global dimension; STABLE EQUIVALENCES; CATEGORIES; DIMENSIONS;
D O I
10.1016/j.jalgebra.2022.06.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that any faithful Frobenius functor between abelian categories preserves the Gorenstein projective dimension of objects. Consequently, it preserves and reflects Gorenstein projective objects. We give conditions on when a Frobenius functor preserves the stable categories of Gorenstein projective objects, the singularity categories and the Gorenstein defect categories, respectively. In the appendix, we give a direct proof of the following known result: for an abelian category with enough projectives and injectives, its global Gorenstein projective dimension coincides with its global Gorenstein injective dimension.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:18 / 37
页数:20
相关论文
共 50 条
  • [1] Gorenstein homological invariant properties under Frobenius extensions
    Zhibing Zhao
    Science China Mathematics, 2019, 62 : 2487 - 2496
  • [2] Gorenstein Homological Properties and Quasi-Frobenius Bimodules
    Chaoling Huang
    Yongliang Sun
    Yanbo Zhou
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 805 - 817
  • [3] Gorenstein homological invariant properties under Frobenius extensions
    Zhibing Zhao
    ScienceChina(Mathematics), 2019, 62 (12) : 2487 - 2496
  • [4] Gorenstein homological invariant properties under Frobenius extensions
    Zhao, Zhibing
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (12) : 2487 - 2496
  • [5] Gorenstein Homological Properties and Quasi-Frobenius Bimodules
    Huang, Chaoling
    Sun, Yongliang
    Zhou, Yanbo
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (03) : 805 - 817
  • [6] Frobenius functors and Gorenstein flat dimensions
    Hu, Jiangsheng
    Li, Huanhuan
    Geng, Yuxian
    Zhang, Dongdong
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (03) : 1257 - 1265
  • [7] Retractions and Gorenstein Homological Properties
    Xiao-Wu Chen
    Yu Ye
    Algebras and Representation Theory, 2014, 17 : 713 - 733
  • [8] Retractions and Gorenstein Homological Properties
    Chen, Xiao-Wu
    Ye, Yu
    ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (03) : 713 - 733
  • [9] GORENSTEIN HOMOLOGICAL PROPERTIES OF TENSOR RINGS
    Chen, Xiao-Wu
    Lu, Ming
    NAGOYA MATHEMATICAL JOURNAL, 2020, 237 : 188 - 208
  • [10] Frobenius functors, stable equivalences and K-theory of Gorenstein projective modules
    Ren, Wei
    JOURNAL OF ALGEBRA, 2022, 612 : 431 - 459