A note on lifting of Carnot groups

被引:0
|
作者
Bonfiglioli, Andrea [1 ]
Uguzzoni, Francesco [1 ]
机构
[1] Univ Bologna, Dipartimento Matemat, I-40126 Bologna, Italy
关键词
lifting of vector fields; Carnot groups; fundamental solutions; free groups;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that every homogeneous Carnot group can be lifted to a free homogeneous Carnot group. Though following the ideas of Rothschild and Stein, we give simple and self-contained arguments, providing a constructive proof, as shown in the examples.
引用
收藏
页码:1013 / 1035
页数:23
相关论文
共 50 条
  • [21] Isoperimetric sets on Carnot groups
    Leonardi, GP
    Rigot, S
    HOUSTON JOURNAL OF MATHEMATICS, 2003, 29 (03): : 609 - 637
  • [22] Subharmonic functions on Carnot groups
    Bonfiglioli, A
    Lanconelli, E
    MATHEMATISCHE ANNALEN, 2003, 325 (01) : 97 - 122
  • [23] Geodesics and isometries of Carnot groups
    Kishimoto, I
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2003, 43 (03): : 509 - 522
  • [24] Convex functions on Carnot groups
    Juutinen, Petri
    Lu, Guozhen
    Manfredi, Juan J.
    Stroffolini, Bianca
    REVISTA MATEMATICA IBEROAMERICANA, 2007, 23 (01) : 191 - 200
  • [25] Ricci curvatures in Carnot groups
    Rifford, Ludovic
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2013, 3 (04) : 467 - 487
  • [26] A METRIC CHARACTERIZATION OF CARNOT GROUPS
    Le Donne, Enrico
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (02) : 845 - 849
  • [27] Polar coordinates in Carnot groups
    Z.M. Balogh
    J.T. Tyson
    Mathematische Zeitschrift, 2002, 241 : 697 - 730
  • [28] Quasiregular maps on Carnot groups
    Heinonen, Juha
    Holopainen, Ilkka
    Journal of Geometric Analysis, 1997, 7 (01): : 109 - 148
  • [29] Polar coordinates in Carnot groups
    Balogh, ZM
    Tyson, JT
    MATHEMATISCHE ZEITSCHRIFT, 2002, 241 (04) : 697 - 730
  • [30] Classes of Nonrigid Carnot Groups
    Ottazzi, Alessandro
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2012, 35 (2A) : 567 - 571