On the origins of fatigue strength in crystalline metallic materials

被引:68
|
作者
Stinville, J. C. [1 ,2 ]
Charpagne, M. A. [1 ,2 ]
Cervellon, A. [2 ,4 ]
Hemery, S. [3 ]
Wang, F. [2 ,5 ]
Callahan, P. G. [2 ,6 ]
Valle, V. [3 ]
Pollock, T. M. [2 ]
机构
[1] Univ Illinois, Chicago, IL 60680 USA
[2] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA
[3] Univ Poitiers, CNRS, Inst PPRIME, ISAE ENSMA,UPR 3346, F-86962 Chasseneuil 86962, France
[4] Safran Aircraft Engines, Chatellerault, France
[5] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[6] US Naval Res Lab, Washington, DC USA
关键词
HIGH-CYCLE FATIGUE; NICKEL-BASED SUPERALLOY; CRACK INITIATION; TENSILE-STRENGTH; BEHAVIOR; ALLOY; TEMPERATURE; MECHANISMS; STRAIN; LOCALIZATION;
D O I
10.1126/science.abn0392
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Metallic materials experience irreversible deformation with increasing applied stress, manifested in localized slip events that result in fatigue failure upon repeated cycling. We discerned the physical origins of fatigue strength in a large set of face-centered cubic, hexagonal close-packed, and body-centered cubic metallic materials by considering cyclic deformation processes at nanometer resolution over large volumes of individual materials at the earliest stages of cycling. We identified quantitative relations between the yield strength and the ultimate tensile strength, fatigue strength, and physical characteristics of early slip localization events. The fatigue strength of metallic alloys that deform by slip could be predicted by the amplitude of slip localization during the first cycle of loading. Our observations provide a physical basis for well-known empirical fatigue laws and enable a rapid method of predicting fatigue strength as reflected by measurement of slip localization amplitude.
引用
收藏
页码:1065 / +
页数:7
相关论文
共 50 条
  • [41] Unique (integrated) fatigue curve of metallic materials
    A. N. Romanov
    Doklady Physics, 2003, 48 : 257 - 259
  • [42] INTERFACIAL EFFECTS OF FATIGUE CRACKING IN METALLIC MATERIALS
    Zhang Zhefeng
    Zhang Peng
    Tian Yanzhong
    Zhang Qingke
    Qu Shen
    Zou Hefei
    Duan Qiqiang
    Li Shouxin
    Wang Zhongguang
    ACTA METALLURGICA SINICA, 2009, 45 (07) : 788 - 800
  • [43] PREDICTION OF FATIGUE NOTCH FACTOR FOR METALLIC MATERIALS
    HU, ZZ
    CAO, SZ
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1993, 36 (04): : 477 - 486
  • [44] Fracture, Fatigue, and Structural Integrity of Metallic Materials
    Cicero, Sergio
    Alberto Alvarez, Jose
    METALS, 2019, 9 (08)
  • [45] Foreword: Fatigue and Corrosion Damage in Metallic Materials
    Zhai, Tongguang
    Liaw, Peter
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2012, 43A (08): : 2742 - 2742
  • [46] Fatigue crack nucleation in metallic materials.
    Peralta, P
    Laird, C
    Ramamurty, U
    Suresh, S
    Campbell, GH
    King, WE
    Mitchell, TE
    SMALL FATIGUE CRACKS: MECHANICS, MECHANISMS, AND APPLICATIONS, 1999, : 17 - 28
  • [47] Fracture Mechanics and Fatigue Design in Metallic Materials
    Rozumek, Dariusz
    METALS, 2021, 11 (12)
  • [48] A unique criterion for the fatigue fracture of metallic materials
    A. N. Romanov
    Doklady Physics, 2001, 46 : 672 - 674
  • [49] Environmental Fatigue Assessment of Metallic Materials and Components
    Cicero, Sergio
    Bruchhausen, Matthias
    METALS, 2021, 11 (10)
  • [50] A unique criterion for the fatigue fracture of metallic materials
    Romanov, AN
    DOKLADY PHYSICS, 2001, 46 (09) : 672 - 674