On the origins of fatigue strength in crystalline metallic materials

被引:68
|
作者
Stinville, J. C. [1 ,2 ]
Charpagne, M. A. [1 ,2 ]
Cervellon, A. [2 ,4 ]
Hemery, S. [3 ]
Wang, F. [2 ,5 ]
Callahan, P. G. [2 ,6 ]
Valle, V. [3 ]
Pollock, T. M. [2 ]
机构
[1] Univ Illinois, Chicago, IL 60680 USA
[2] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA
[3] Univ Poitiers, CNRS, Inst PPRIME, ISAE ENSMA,UPR 3346, F-86962 Chasseneuil 86962, France
[4] Safran Aircraft Engines, Chatellerault, France
[5] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[6] US Naval Res Lab, Washington, DC USA
关键词
HIGH-CYCLE FATIGUE; NICKEL-BASED SUPERALLOY; CRACK INITIATION; TENSILE-STRENGTH; BEHAVIOR; ALLOY; TEMPERATURE; MECHANISMS; STRAIN; LOCALIZATION;
D O I
10.1126/science.abn0392
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Metallic materials experience irreversible deformation with increasing applied stress, manifested in localized slip events that result in fatigue failure upon repeated cycling. We discerned the physical origins of fatigue strength in a large set of face-centered cubic, hexagonal close-packed, and body-centered cubic metallic materials by considering cyclic deformation processes at nanometer resolution over large volumes of individual materials at the earliest stages of cycling. We identified quantitative relations between the yield strength and the ultimate tensile strength, fatigue strength, and physical characteristics of early slip localization events. The fatigue strength of metallic alloys that deform by slip could be predicted by the amplitude of slip localization during the first cycle of loading. Our observations provide a physical basis for well-known empirical fatigue laws and enable a rapid method of predicting fatigue strength as reflected by measurement of slip localization amplitude.
引用
收藏
页码:1065 / +
页数:7
相关论文
共 50 条
  • [2] Databook on Fatigue Strength of Metallic Materials
    K.Shiozawa
    Toyama
    T.Sakai
    Shiga
    Journal of Materials Science & Technology, 1998, (02) : 191 - 192
  • [3] An optimization criterion for fatigue strength of metallic materials
    Wang, B.
    Zhang, P.
    Liu, R.
    Duan, Q. Q.
    Zhang, Z. J.
    Li, X. W.
    Zhang, Z. F.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 736 : 105 - 110
  • [4] Modeling the temperature dependence of fatigue strength of metallic materials
    He, Yi
    Li, Weiguo
    Yang, Mengqing
    Zhao, Ziyuan
    Zhang, Xuyao
    Dong, Pan
    Zheng, Shifeng
    Ma, Yanli
    INTERNATIONAL JOURNAL OF FATIGUE, 2022, 161
  • [5] On the evaluation of overload effects on the fatigue strength of metallic materials
    Hemmesi, Kimiya
    Ellmer, Franz
    Farajian, Majid
    Varfolomeev, Igor
    Luke, Michael
    9TH EDITION OF THE INTERNATIONAL CONFERENCE ON FATIGUE DESIGN, FATIGUE DESIGN 2021, 2022, 38 : 401 - 410
  • [6] General relation between tensile strength and fatigue strength of metallic materials
    Pang, J. C.
    Li, S. X.
    Wang, Z. G.
    Zhang, Z. F.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 564 : 331 - 341
  • [7] Relations between fatigue strength and other mechanical properties of metallic materials
    Pang, J. C.
    Li, S. X.
    Wang, Z. G.
    Zhang, Z. F.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2014, 37 (09) : 958 - 976
  • [8] Analytical results of fatigue reliability for structural steels based on database on fatigue strength of metallic materials
    Hanaki, Satoshi
    Okada, Kenji
    Sakaida, Akiyoshi
    Sugeta, Atsushi
    Nishikawa, Izuru
    Ueno, Akira
    Sakai, Tatsuo
    Zairyo/Journal of the Society of Materials Science, Japan, 2012, 61 (02) : 98 - 105
  • [9] Fatigue strength of metallic and composite materials under repeated tension-compression
    Golub, V. P.
    Krizhanovskii, V. I.
    Pogrebnyak, A. D.
    Kochetkova, E. S.
    INTERNATIONAL APPLIED MECHANICS, 2006, 42 (01) : 40 - 50
  • [10] Fatigue strength of metallic and composite materials under repeated tension-compression
    V. P. Golub
    V. I. Krizhanovskii
    A. D. Pogrebnyak
    E. S. Kochetkova
    International Applied Mechanics, 2006, 42 : 40 - 50