Parameter study of global and cluster synchronization in arrays of dry friction oscillators

被引:10
|
作者
Marszal, Michal [1 ]
Stefanski, Andrzej [1 ]
机构
[1] Tech Univ Lodz, Div Dynam, ul Stefanowskiego 1-15, PL-90924 Lodz, Poland
关键词
Synchronization; Stick-slip; Friction; Master stability function; Burridge-Knopoff model; STICK-SLIP MOTION; COUPLED DYNAMICAL-SYSTEMS; CHAOTIC SYSTEMS; EXTERNAL EXCITATION; STABILITY; MODEL; NETWORKS; MECHANISM; LOCKING; BRAKE;
D O I
10.1016/j.physleta.2017.02.008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate synchronization thresholds in arrays of identical classic stick-slip dry friction oscillators connected in a nearest neighbor fashion in closed and open ring network. Friction force is modeled by smoothened Stribeck model. Arrays of different length are checked in two parameter space (i.e., coupling coefficient vs. excitation frequency) for complete synchronization as well as cluster synchronization. Synchronization thresholds obtained by brute force numerical integration are compared with possible synchronization regions using the concept called master stability function in the form of two-oscillator reference probe. The results show existence of both complete synchronization and cluster synchronization regions in the investigated systems and confirm that two-oscillator probe can be applied for prediction of synchronization thresholds in systems with stick-slip phenomenon. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1286 / 1301
页数:16
相关论文
共 50 条
  • [31] Synchronization from disordered driving forces in arrays of coupled oscillators
    Brandt, SF
    Dellen, BK
    Wessel, R
    PHYSICAL REVIEW LETTERS, 2006, 96 (03)
  • [32] Robust synchronization of different coupled oscillators: Application to antenna arrays
    Hutu, Florin
    Cauet, Sebastien
    Coirault, Patrick
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2009, 346 (05): : 413 - 430
  • [33] Effects of a parameter mismatch on the synchronization of two coupled chaotic oscillators
    Yanchuk, S
    Maistrenko, Y
    Lading, B
    Mosekilde, E
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (11): : 2629 - 2648
  • [34] ON THE GLOBAL CONVERGENCE OF FREQUENCY SYNCHRONIZATION FOR KURAMOTO AND WINFREE OSCILLATORS
    Hsia, Chun-Hsiung
    Jung, Chang-Yeol
    Kwon, Bongsuk
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (07): : 3319 - 3334
  • [35] Global synchronization of partially forced Kuramoto oscillators on networks
    Moreira, Carolina A.
    de Aguiar, Marcus A. M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 514 : 487 - 496
  • [36] Global synchronization of delay-coupled genetic oscillators
    Qiu, Jianlong
    Cao, Jinde
    NEUROCOMPUTING, 2009, 72 (16-18) : 3845 - 3850
  • [37] Global Synchronization of Pulse-Coupled Oscillators on Trees
    Lyu, Hanbaek
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2018, 17 (02): : 1521 - 1559
  • [38] Exact and Approximate Stability Conditions for Cluster Synchronization of Kuramoto Oscillators
    Menara, Tommaso
    Baggio, Giacomo
    Bassett, Danielle S.
    Pasqualetti, Fabio
    2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 205 - 210
  • [39] Conditions for global synchronization in networks of heterogeneous Kuramoto oscillators
    Mercado-Uribe, Angel
    Mendoza-Avila, Jesus
    Efimov, Denis
    Schiffer, Johannes
    AUTOMATICA, 2025, 175
  • [40] Global Synchronization of Coupled Genetic Oscillators with Distributed Delay
    Ren Fengli
    Zhao Hongyong
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 2804 - 2809