Generalized vortex model for the inverse cascade of two-dimensional turbulence

被引:2
|
作者
Friedrich, J. [1 ]
Friedrich, R. [2 ]
机构
[1] Ruhr Univ Bochum, Inst Theoret Phys 1, D-44801 Bochum, Germany
[2] Univ Munster, Inst Theoret Phys, D-48149 Munster, Germany
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 05期
关键词
ENERGY CASCADE; HYDRODYNAMIC TURBULENCE; DEVIATIONS; VORTICES; BEHAVIOR;
D O I
10.1103/PhysRevE.88.053017
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We generalize Kirchhoff's point vortex model of two-dimensional fluid motion to a rotor model which exhibits an inverse cascade by the formation of rotor clusters. A rotor is composed of two vortices with like-signed circulations glued together by an overdamped spring. The model is motivated by a treatment of the vorticity equation representing the vorticity field as a superposition of vortices with elliptic Gaussian shapes of variable widths, augmented by a suitable forcing mechanism. The rotor model opens up the way to discuss the energy transport in the inverse cascade on the basis of dynamical systems theory.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Stationary spectrum of vorticity cascade in two-dimensional turbulence
    Pasquero, C
    Falkovich, G
    [J]. PHYSICAL REVIEW E, 2002, 65 (05):
  • [42] Theory of vortex crystal formation in two-dimensional turbulence
    Jin, DZ
    Dubin, DHE
    [J]. PHYSICS OF PLASMAS, 2000, 7 (05) : 1719 - 1722
  • [43] Universal Profile of the Vortex Condensate in Two-Dimensional Turbulence
    Laurie, Jason
    Boffetta, Guido
    Falkovich, Gregory
    Kolokolov, Igor
    Lebedev, Vladimir
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (25)
  • [44] Coherent Vortex Simulation (CVS) of two-dimensional turbulence
    Schneider, K
    Farge, M
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S485 - S486
  • [45] Vorticity statistics in the direct cascade of two-dimensional turbulence
    Falkovich, Gregory
    Lebedev, Vladimir
    [J]. PHYSICAL REVIEW E, 2011, 83 (04):
  • [46] Enstrophy Cascade in Decaying Two-Dimensional Quantum Turbulence
    Reeves, Matthew T.
    Billam, Thomas P.
    Yu, Xiaoquan
    Bradley, Ashton S.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (18)
  • [47] Point-vortex approach in two-dimensional turbulence
    Kuvshinov, B. N.
    Schep, T. J.
    [J]. PLASMA PHYSICS REPORTS, 2016, 42 (05) : 523 - 536
  • [48] Vortex merger and topological changes in two-dimensional turbulence
    Al Sulti, Fayeza
    Ohkitani, Koji
    [J]. PHYSICAL REVIEW E, 2012, 86 (01):
  • [49] Point-vortex approach in two-dimensional turbulence
    B. N. Kuvshinov
    T. J. Schep
    [J]. Plasma Physics Reports, 2016, 42 : 523 - 536
  • [50] Vortex merging and spectral cascade in two-dimensional flows
    Nielsen, AH
    He, X
    Rasmussen, JJ
    Bohr, T
    [J]. PHYSICS OF FLUIDS, 1996, 8 (09) : 2263 - 2265