On Schrodinger Oscillatory Integrals Associated with the Dunkl Transform

被引:2
|
作者
Li, Zhongkai [1 ]
Zhang, Xiaoliang [2 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger oscillatory integral; Sobolev space; Dunkl transform; Dunkl operator; Hausdorff dimension; RADIAL FUNCTIONS; BILINEAR APPROACH; DIVERGENCE SETS; SINGULAR SETS; CONVERGENCE; REGULARITY;
D O I
10.1007/s00041-018-9597-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper we study the Schrodinger oscillatory integrals T,atf(x) (0, a>1) associated with the one-dimensional Dunkl transform F. If a=2, the function u(x,t):=T,2tf(x) solves the free Schrodinger equation associated to the Dunkl operator, with f as the initial data. It is proved that, if f is in the Sobolev spaces Hs(R) associated with the Dunkl transform, with the exponents s not less than 1/4, then T,atf converges almost everywhere to f as t0. A counterexample is constructed to show that 1/4 can not be improved for a=2, and when 1/4s1/2, the Hausdorff dimension of the divergence set of T,atf for fHs(R) is proved to be 1-2s at most.
引用
收藏
页码:267 / 298
页数:32
相关论文
共 50 条
  • [31] Singular integrals in the rational Dunkl setting
    Jacek Dziubański
    Agnieszka Hejna
    Revista Matemática Complutense, 2022, 35 : 711 - 737
  • [32] On Some Theorems of the Dunkl—Lipschitz Class for the Dunkl Transform
    Mohamed El Hamma
    Radouan Daher
    Lobachevskii Journal of Mathematics, 2019, 40 : 1157 - 1163
  • [33] WEIGHTED INEQUALITIES FOR DUNKL FRACTIONAL MAXIMAL FUNCTION AND DUNKL FRACTIONAL INTEGRALS
    Mammadov, Yagub Y.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2014, 40 (01): : 93 - 103
  • [34] On fractional maximal function and fractional integrals associated with the Dunkl operator on the real line
    Guiyev, Vagif S.
    Mammadov, Yagub Y.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 353 (01) : 449 - 459
  • [35] Singular integrals in the rational Dunkl setting
    Dziubanski, Jacek
    Hejna, Agnieszka
    REVISTA MATEMATICA COMPLUTENSE, 2022, 35 (03): : 711 - 737
  • [36] Dunkl-Schrodinger semigroups and applications
    Mejjaoli, Hatem
    APPLICABLE ANALYSIS, 2013, 92 (08) : 1597 - 1626
  • [37] BLO estimates for Marcinkiewicz integrals associated with Schrodinger operators
    Gao, Wenhua
    Tang, Lin
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2019, 129 (05):
  • [38] Boundedness and compactness of localization operators associated with the Dunkl-Wigner transform
    Mejjaoli, Hatem
    Trimeche, Khalifa
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2018, 29 (04) : 310 - 334
  • [39] Riesz transform and Riesz potentials for Dunkl transform
    Thangavelu, Sundaram
    Xu, Yuan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 199 (01) : 181 - 195
  • [40] On Some Theorems of the Dunkl-Lipschitz Class for the Dunkl Transform
    El Hamma, Mohamed
    Daher, Radouan
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2019, 40 (08) : 1157 - 1163