Deep neural networks and transfer learning applied to multimedia web mining

被引:10
|
作者
Lopez-Sanchez, Daniel [1 ]
Gonzalez Arrieta, Angelica [1 ]
Corchado, Juan M. [1 ]
机构
[1] Univ Salamanca, Dept Comp Sci & Automat, Salamanca, Spain
关键词
Web mining; deep learning; transfer learning;
D O I
10.1007/978-3-319-62410-5_15
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The growth in the amount of multimedia content available online supposes a challenge for search and recommender systems. This information in the form of visual elements is of great value to a variety of web mining tasks; however, the mining of these resources is a difficult task due to the complexity and variability of the images. In this paper, we propose applying a deep learning model to the problem of web categorization. In addition, we make use of a technique known as transfer or inductive learning to drastically reduce the computational cost of the training phase. Finally, we report experimental results on the effectiveness of the proposed method using different classification methods and features from various depths of the deep model.
引用
收藏
页码:124 / 131
页数:8
相关论文
共 50 条
  • [41] Online Deep Learning: Learning Deep Neural Networks on the Fly
    Sahoo, Doyen
    Pham, Quang
    Lu, Jing
    Hoi, Steven C. H.
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2660 - 2666
  • [42] Deep convolutional neural networks with transfer learning for automated brain image classification
    Kaur, Taranjit
    Gandhi, Tapan Kumar
    MACHINE VISION AND APPLICATIONS, 2020, 31 (03)
  • [43] Auto-compression transfer learning methodology for deep convolutional neural networks
    Camacho, J. D.
    Villasenor, Carlos
    Gomez-Avila, Javier
    Lopez-Franco, Carlos
    Arana-Daniel, Nancy
    NEUROCOMPUTING, 2025, 630
  • [44] Rice leaf diseases prediction using deep neural networks with transfer learning
    Krishnamoorthy, N.
    Prasad, L. V. Narasimha
    Kumar, C. S. Pavan
    Subedi, Bharat
    Abraha, Haftom Baraki
    Sathishkumar, V. E.
    ENVIRONMENTAL RESEARCH, 2021, 198
  • [45] Transfer Learning with Deep Recurrent Neural Networks for Remaining Useful Life Estimation
    Zhang, Ansi
    Wang, Honglei
    Li, Shaobo
    Cui, Yuxin
    Liu, Zhonghao
    Yang, Guanci
    Hu, Jianjun
    APPLIED SCIENCES-BASEL, 2018, 8 (12):
  • [46] Transfer Learning for Clinical Time Series Analysis Using Deep Neural Networks
    Gupta, Priyanka
    Malhotra, Pankaj
    Narwariya, Jyoti
    Vig, Lovekesh
    Shroff, Gautam
    JOURNAL OF HEALTHCARE INFORMATICS RESEARCH, 2020, 4 (02) : 112 - 137
  • [47] Decision support from financial disclosures with deep neural networks and transfer learning
    Kraus, Mathias
    Feuerriegel, Stefan
    DECISION SUPPORT SYSTEMS, 2017, 104 : 38 - 48
  • [48] Diabetic Retinopathy Recognition and Classification Using Transfer Learning Deep Neural Networks
    Mane, Deepak
    Ashtagi, Rashmi
    Suryawanshi, Ranjeetsingh
    Kaulage, Anant N.
    Hedaoo, Anushka N.
    Kulkarni, Prathamesh V.
    Gandhi, Yatin
    TRAITEMENT DU SIGNAL, 2024, 41 (05) : 2683 - 2691
  • [49] Sparse coding of pathology slides compared to transfer learning with deep neural networks
    Will Fischer
    Sanketh S. Moudgalya
    Judith D. Cohn
    Nga T. T. Nguyen
    Garrett T. Kenyon
    BMC Bioinformatics, 19
  • [50] Deep Convolutional Neural Networks With Transfer Learning for Automobile Damage Image Classification
    Tian, Xiaoguang
    Han, Henry
    JOURNAL OF DATABASE MANAGEMENT, 2022, 33 (03)