The Voronoi identity via the Laplace transform

被引:3
|
作者
Ivic, A [1 ]
机构
[1] Univ Belgrade, Katedra Matemat RGFA, YU-11000 Belgrade, Yugoslavia
来源
RAMANUJAN JOURNAL | 1998年 / 2卷 / 1-2期
关键词
Voronoi identity; number of divisors; Laplace transform; Bessel functions; Fourier coefficients of cusp forms;
D O I
10.1023/A:1009753723245
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical Voronoi identity [GRAPHICS] is proved in a relatively simple way by the use of the Laplace transform. Here Delta(x) denotes the error term in the Dirichlet divisor problem, d(n) is the number of divisors of n and K-1, Y-1 are the Bessel functions. The method of proof may be used to yield other identities similar to Voronoi's.
引用
收藏
页码:39 / 45
页数:7
相关论文
共 50 条
  • [21] LAPLACE TRANSFORM
    不详
    SIAM REVIEW, 1971, 13 (03) : 397 - &
  • [22] On the Laplace transform
    Ramm, Alexander G.
    JOURNAL OF APPLIED ANALYSIS, 2024, 30 (02) : 209 - 213
  • [23] Bound states in a double delta potential via Laplace transform
    de Castro, A. S.
    REVISTA BRASILEIRA DE ENSINO DE FISICA, 2012, 34 (04):
  • [24] RELATIVISTIC BOUND STATES IN A PSEUDOHARMONIC OSCILLATOR VIA LAPLACE TRANSFORM
    Ikhdair, Sameer M.
    Hamzavi, Majid
    Pazouki, A. R.
    Behrouz, A. H.
    Amirfakhrian, Majid
    ROMANIAN REPORTS IN PHYSICS, 2014, 66 (03) : 621 - 629
  • [25] Positive-Part Moments via the Fourier–Laplace Transform
    Iosif Pinelis
    Journal of Theoretical Probability, 2011, 24 : 409 - 421
  • [26] Simulation of Buck Converters via Numerical Inverse Laplace Transform
    Trinchero, Riccardo
    Stievano, Igor S.
    Canavero, Flavio G.
    2017 IEEE 21ST WORKSHOP ON SIGNAL AND POWER INTEGRITY (SPI), 2017,
  • [27] Establishing geometric drift via the Laplace transform of symmetric measures
    Hansen, NR
    Hansen, E
    STATISTICS & PROBABILITY LETTERS, 2002, 60 (03) : 289 - 295
  • [28] The Cayley-Hamilton and Frobenius theorems via the Laplace transform
    Adkins, WA
    Davidson, MG
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 371 (SUPPL.) : 147 - 152
  • [29] DISTRIBUTION OF INTERNALLY STUDENTIZED STATISTICS VIA LAPLACE TRANSFORM INVERSION
    MARGOLIN, BH
    BIOMETRIKA, 1977, 64 (03) : 573 - 582
  • [30] On the representation of solutions of delayed differential equations via Laplace transform
    Pospisil, Michal
    Jaros, Frantisek
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2016, (117) : 1 - 13