The Voronoi identity via the Laplace transform

被引:3
|
作者
Ivic, A [1 ]
机构
[1] Univ Belgrade, Katedra Matemat RGFA, YU-11000 Belgrade, Yugoslavia
来源
RAMANUJAN JOURNAL | 1998年 / 2卷 / 1-2期
关键词
Voronoi identity; number of divisors; Laplace transform; Bessel functions; Fourier coefficients of cusp forms;
D O I
10.1023/A:1009753723245
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical Voronoi identity [GRAPHICS] is proved in a relatively simple way by the use of the Laplace transform. Here Delta(x) denotes the error term in the Dirichlet divisor problem, d(n) is the number of divisors of n and K-1, Y-1 are the Bessel functions. The method of proof may be used to yield other identities similar to Voronoi's.
引用
收藏
页码:39 / 45
页数:7
相关论文
共 50 条