Hyperspectral Image Classification using the MRELBP Texture Descriptor

被引:2
|
作者
Barburiceanu, Stefania [1 ]
Terebes, Romulus [1 ]
Meza, Serban [1 ]
机构
[1] Tech Univ Cluj Napoca, Commun Dept, Cluj Napoca, Romania
关键词
hyperspectral image classification; Local Binary Patterns; feature extraction; LOCAL BINARY PATTERNS;
D O I
10.1109/EHB47216.2019.8969874
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
This paper presents an extension of the Local Binary Patterns feature descriptors to hyperspectral image classification. Our approach uses a Principal Component Analysis technique to extract the most representative bands and for each pixel, it concatenates the histograms obtained for each selected band. The histograms are built from features which are discriminative and invariant to different transformations in the input. The proposed method achieves promising results for hyperspectral image classification. We tested our technique on four publicly available hyperspectral image databases of Earth observation images and for all of them the proposed method improved the classification accuracy when compared to the classical Local Binary Pattern approach.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [32] Image Retrieval Using Local Texture Descriptor for CE Applications
    Park, Ki Tae
    Lee, Jeong Ho
    Moon, Young Shik
    2009 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS, 2009, : 453 - +
  • [33] Comparison of two gabor texture descriptor for texture classification
    Zhan, Xu
    Sun, Xingbo
    Lei Yuerong
    2009 WASE INTERNATIONAL CONFERENCE ON INFORMATION ENGINEERING, ICIE 2009, VOL I, 2009, : 52 - 56
  • [34] Texture Image Segmentation using a New Descriptor and Mathematical Morphology
    Yassine, Idrissi Sidi
    Belfkih, Samir
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2013, 10 (02) : 204 - 208
  • [35] Document image binarization by using texture-edge descriptor
    Armanfard, N.
    Valizadeh, M.
    Komeili, M.
    Kabir, E.
    2009 14TH INTERNATIONAL COMPUTER CONFERENCE, 2009, : 133 - 138
  • [36] Improving hyperspectral image classification by combining spectral, texture, and shape features
    Mirzapour, Fardin
    Ghassemian, Hassan
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (04) : 1070 - 1096
  • [37] Laboratory-based hyperspectral image analysis for the classification of soil texture
    Jia, Shengyao
    Li, Hongyang
    Wu, Xia
    Li, Qing
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (04):
  • [38] Bilateral texture filtering for spectral-spatial hyperspectral image classification
    Zhang, Ying
    He, Jing
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (23): : 9173 - 9177
  • [39] Noise Tolerant Descriptor for Texture Classification
    Thanh Phuong Nguyen
    Manzanera, Antoine
    5TH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, THEORY, TOOLS AND APPLICATIONS 2015, 2015, : 237 - 241
  • [40] Hyperspectral soil texture classification
    Zhang, XD
    Vijayaraj, V
    Younan, NH
    2003 IEEE WORKSHOP ON ADVANCES IN TECHNIQUES FOR ANALYSIS OF REMOTELY SENSED DATA, 2004, : 182 - 186