The Cuntz semigroup, the Elliott conjecture, and dimension functions on C *-algebras

被引:63
|
作者
Brown, Nathanial P. [1 ]
Perera, Francesc [2 ]
Toms, Andrew S. [3 ]
机构
[1] Penn State Univ, Dept Math, State Coll, PA 16802 USA
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[3] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1515/CRELLE.2008.062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the Cuntz semigroup is recovered functorially from the Elliott invariant for a large class of C* -algebras. In particular, our results apply to the largest class of simple C* -algebras for which K-theoretic classification can be hoped for. This work has three significant consequences. First, it provides new conceptual insight into Elliott's classification program, proving that the usual form of the Elliott conjecture is equivalent, among Z-stable algebras, to a conjecture which is in general substantially weaker and for which there are no known counterexamples. Second and third, it resolves, for the class of algebras above, two conjectures of Blackadar and Handelman concerning the basic structure of dimension functions on C* -algebras. We also prove in passing that the Cuntz-Pedersen semigroup is recovered functorially from the Elliott invariant for a large class of simple unital C*-algebras.
引用
收藏
页码:191 / 211
页数:21
相关论文
共 50 条
  • [31] The Cuntz-Toeplitz algebras have nuclear dimension one
    Easo, Philip
    Garijo, Esperanza
    Kaubrys, Sarunas
    Nkansah, David
    Vrabec, Martin
    Watt, David
    Wilson, Cameron
    Boenicke, Christian
    Evington, Samuel
    Forough, Marzieh
    Pacheco, Sergio Giron
    Seaton, Nicholas
    White, Stuart
    Whittaker, Michael F.
    Zacharias, Joachim
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (07)
  • [32] A note on the nuclear dimension of Cuntz-Pimsner C*-algebras associated with minimal shift spaces
    He, Zhuofeng
    Wei, Sihan
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024, 76 (01): : 104 - 125
  • [33] On the finitistic dimension conjecture of Artin algebras
    Zhang, Aiping
    Zhang, Shunhua
    JOURNAL OF ALGEBRA, 2008, 320 (01) : 253 - 258
  • [34] Finitistic dimension conjecture and extensions of algebras
    Guo, Shufeng
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (08) : 3170 - 3180
  • [35] TRACE FUNCTIONS ON INVERSE SEMIGROUP ALGEBRAS
    EASDOWN, D
    MUNN, WD
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1995, 52 (03) : 359 - 372
  • [36] Cuntz-Krieger Algebras and C*-Algebras of Topological Graphs
    Takeshi Katsura
    Acta Applicandae Mathematicae, 2009, 108 : 617 - 624
  • [37] DIMENSION FUNCTIONS AND TRACES ON C-STAR-ALGEBRAS
    BLACKADAR, B
    HANDELMAN, D
    JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 45 (03) : 297 - 340
  • [38] DIMENSION FUNCTIONS ON SIMPLE C-STAR-ALGEBRAS
    CUNTZ, J
    MATHEMATISCHE ANNALEN, 1978, 233 (02) : 145 - 153
  • [39] Cuntz-Krieger Algebras and C *-Algebras of Topological Graphs
    Katsura, Takeshi
    ACTA APPLICANDAE MATHEMATICAE, 2009, 108 (03) : 617 - 624
  • [40] C*-algebras of infinite graphs and Cuntz-Krieger algebras
    Brenken, B
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2002, 45 (03): : 321 - 336