Learning hierarchical models of shape

被引:0
|
作者
Yuille, A. L. [1 ]
机构
[1] Univ Calif Los Angeles, Los Angeles, CA 90024 USA
关键词
D O I
暂无
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
引用
收藏
页码:2 / 2
页数:1
相关论文
共 50 条
  • [41] Using hierarchical shape models to spot keywords in cursive handwriting data
    Burl, MC
    Perona, P
    1998 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1998, : 535 - 540
  • [42] Learning Dynamic Hierarchical Models for Anytime Scene Labeling
    Liu, Buyu
    He, Xuming
    COMPUTER VISION - ECCV 2016, PT VI, 2016, 9910 : 650 - 666
  • [43] Learning Hierarchical Task Models from Input Traces
    Hogg, Chad
    Munoz-Avila, Hector
    Kuter, Ugur
    COMPUTATIONAL INTELLIGENCE, 2016, 32 (01) : 3 - 48
  • [44] Deliberative acting, planning and learning with hierarchical operational models
    Patra, Sunandita
    Mason, James
    Ghallab, Malik
    Nau, Dana
    Traverso, Paolo
    ARTIFICIAL INTELLIGENCE, 2021, 299 (299)
  • [45] Dynamics of Learning In Hierarchical Models - Singularity and Milnor Attractor
    Amari, Shun-ichi
    Ozeki, Tomoko
    Cousseau, Florent
    Wei, Haikun
    ADVANCES IN COGNITIVE NEURODYNAMICS (II), 2011, : 3 - 9
  • [46] Learning Latent and Hierarchical Structures in Cognitive Diagnosis Models
    Chenchen Ma
    Jing Ouyang
    Gongjun Xu
    Psychometrika, 2023, 88 : 175 - 207
  • [47] A Deep Learning Method for Comparing Bayesian Hierarchical Models
    Elsemueller, Lasse
    Schnuerch, Martin
    Buerkner, Paul-Christian
    Radev, Stefan T.
    PSYCHOLOGICAL METHODS, 2024,
  • [48] Learning to Dub Movies via Hierarchical Prosody Models
    Cong, Gaoxiang
    Li, Liang
    Qi, Yuankai
    Zha, Zheng-Jun
    Wu, Qi
    Wang, Wenyu
    Jiang, Bin
    Yang, Ming-Hsuan
    Huang, Qingming
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 14687 - 14697
  • [49] Learning Hierarchical Features from Deep Generative Models
    Zhao, Shengjia
    Song, Jiaming
    Ermon, Stefano
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [50] Exploring the limits of hierarchical world models in reinforcement learning
    Schiewer, Robin
    Subramoney, Anand
    Wiskott, Laurenz
    SCIENTIFIC REPORTS, 2024, 14 (01):