On some method for solving a nonlinear heat equation

被引:9
|
作者
Rubina, L. I. [1 ]
Ul'yanov, O. N. [1 ]
机构
[1] Ural Fed Univ, Russian Acad Sci, Ural Div, Inst Math & Mech, Ekaterinburg, Russia
关键词
nonlinear partial differential equations; heat equation; boundary value problem; initial-boundary value problem;
D O I
10.1134/S0037446612050126
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some exact solutions to a nonlinear heat equation are constructed. An initial-boundary value problem is examined for a nonlinear heat equation. To construct solutions, the problem for a partial differential equation of the second order is reduced to a similar problem for a first order partial differential equation.
引用
收藏
页码:872 / 881
页数:10
相关论文
共 50 条
  • [31] A fast method for solving the heat equation by layer potentials
    Tausch, Johannes
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 224 (02) : 956 - 969
  • [32] Improved method for solving the heat equation with BEM and collocation
    Herrmann, N
    CURRENT TRENDS IN SCIENTIFIC COMPUTING, 2003, 329 : 165 - 174
  • [33] Crank–Nicolson method for solving uncertain heat equation
    Jin Liu
    Yifei Hao
    Soft Computing, 2022, 26 : 937 - 945
  • [34] Wavelets Galerkin method for solving stochastic heat equation
    Heydari, M. H.
    Hooshmandasl, M. R.
    Loghmani, Gh. Barid
    Cattani, C.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (09) : 1579 - 1596
  • [35] SOME MOMENTS METHOD OF SOLVING THE BOLTZMANN-EQUATION
    OWEDYK, J
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1984, 56 (03): : 267 - 272
  • [36] Discrete Group Method for Nonlinear Heat Equation
    Darania, Parviz
    Ebadian, Ali
    KYUNGPOOK MATHEMATICAL JOURNAL, 2006, 46 (03): : 329 - 336
  • [37] SOLUTION OF A NONLINEAR HEAT EQUATION BY PICARS METHOD
    PROZOROVA, EV
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1977, (04): : 110 - 113
  • [38] Solving the heat equation
    Albin, Pierre
    Rochon, Frederic
    Sher, David
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 269 (1314) : 59 - 75
  • [39] A numerical method for solving nonlinear heat transfer equations
    Shih, Tien-Mo
    Sung, Chao-Ho
    Yang, Bao
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2008, 54 (04) : 338 - 353
  • [40] FACTORIZATION METHOD FOR SOLVING SOME CLASSES OF NONLINEAR EQUATIONS
    Bisso, Saley
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2008, 2 (02): : 153 - 160