Generalized variable resolution designs

被引:1
|
作者
Lin, Jin-Guan [1 ]
Chen, Xue-Ping [1 ,2 ]
Yang, Jian-Feng [3 ,4 ]
Huang, Xing-Fang [1 ]
Zhang, Ying-Shan [5 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 211189, Jiangsu, Peoples R China
[2] Jiangsu Univ Technol, Dept Math, Changzhou 213001, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[4] Nankai Univ, Inst Stat, Tianjin 300071, Peoples R China
[5] E China Normal Univ, Sch Finance & Stat, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
Clear effects; Compromise plans; Partially clear effects; Variable resolution; CLEAR 2-FACTOR INTERACTIONS; FACTORIAL-DESIGNS; ORTHOGONAL ARRAYS; ROBUST; IV; PLANS;
D O I
10.1007/s00184-015-0531-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, the concept of generalized variable resolution is proposed for designs with nonnegligible interactions between groups. The conditions for the existence of generalized variable resolution designs are discussed. Connections between different generalized variable resolution designs and compromise plans, clear compromise plans and designs containing partially clear two-factor interactions are explored. A general construction method for the proposed designs is also discussed.
引用
收藏
页码:873 / 884
页数:12
相关论文
共 50 条
  • [1] Generalized variable resolution designs
    Jin-Guan Lin
    Xue-Ping Chen
    Jian-Feng Yang
    Xing-Fang Huang
    Ying-Shan Zhang
    [J]. Metrika, 2015, 78 : 873 - 884
  • [2] Designs of variable resolution
    Lin, C. Devon
    [J]. BIOMETRIKA, 2012, 99 (03) : 748 - 754
  • [3] CONSTRUCTION OF RESOLUTION-III FRACTIONS FROM GENERALIZED CYCLIC DESIGNS
    LEWIS, SM
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1979, 41 (03): : 352 - 357
  • [4] DESIGNS OF VARIABLE RESOLUTION ROBUST TO NON-NEGLIGIBLE TWO-FACTOR INTERACTIONS
    Lekivetz, Ryan
    Lin, C. Devon
    [J]. STATISTICA SINICA, 2016, 26 (03) : 1269 - 1278
  • [5] Generalized orthogonal designs
    Georgiou, S
    Koukouvinos, C
    Seberry, J
    [J]. ARS COMBINATORIA, 2004, 71 : 33 - 47
  • [6] GENERALIZED-DESIGNS
    Shirazi, F. Ayatollah Zadeh
    Bagherian, M.
    [J]. MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2011, 23 (01) : 27 - 47
  • [7] Generalized packing designs
    Bailey, Robert F.
    Burgess, Andrea C.
    [J]. DISCRETE MATHEMATICS, 2013, 313 (11) : 1167 - 1190
  • [8] GENERALIZED HANDCUFFED DESIGNS
    MAURIN, F
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1987, 46 (02) : 175 - 182
  • [9] A search of maximum generalized resolution quaternary-code designs via integer linear programming
    Phoa, Frederick Kin Hing
    Wang, Tai-Chi
    Lin, Shu-Ching
    [J]. STATISTICS AND COMPUTING, 2016, 26 (1-2) : 277 - 283
  • [10] A search of maximum generalized resolution quaternary-code designs via integer linear programming
    Frederick Kin Hing Phoa
    Tai-Chi Wang
    Shu-Ching Lin
    [J]. Statistics and Computing, 2016, 26 : 277 - 283