A search of maximum generalized resolution quaternary-code designs via integer linear programming

被引:0
|
作者
Frederick Kin Hing Phoa
Tai-Chi Wang
Shu-Ching Lin
机构
[1] Academia Sinica,Institute of Statistical Science
来源
Statistics and Computing | 2016年 / 26卷
关键词
Experimental designs; Optimization; Quaternary-code designs; Integer linear programming; Generalized resolution;
D O I
暂无
中图分类号
学科分类号
摘要
Quaternary-code (QC) designs, an attractive class of nonregular fractional factorial designs, have received much attention due to their theoretical elegance and practical applicability. Some recent works of QC designs revealed their good properties over their regular counterparts under commonly used criteria. We develop an optimization tool that can maximize the generalized resolution of a QC design of a given size. The problem can be recast as an integer linear programming (ILP) problem through a linear simplification that combines the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}- and a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a$$\end{document}-equations, even though the generalized resolution does not linearly depend on the aliasing indexes. The ILP surprisingly improves a class of (1/16)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1/16)$$\end{document}th-fraction QC designs with higher generalized resolutions. It also applies to obtain some (1/64)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1/64)$$\end{document}th-fraction QC designs with maximum generalized resolutions, and these QC designs generally have higher generalized resolutions than the regular designs of the same size.
引用
收藏
页码:277 / 283
页数:6
相关论文
共 50 条
  • [1] A search of maximum generalized resolution quaternary-code designs via integer linear programming
    Phoa, Frederick Kin Hing
    Wang, Tai-Chi
    Lin, Shu-Ching
    [J]. STATISTICS AND COMPUTING, 2016, 26 (1-2) : 277 - 283
  • [2] Analysis of a generalized Linear Ordering Problem via integer programming
    Mendez-Diaz, Isabel
    Vulcano, Gustavo
    Zabala, Paula
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 271 : 93 - 107
  • [3] Code optimization by integer linear programming
    Kästner, D
    Langenbach, M
    [J]. COMPILER CONSTRUCTION, 1999, 1575 : 122 - 136
  • [4] Blocking Orthogonal Designs With Mixed Integer Linear Programming
    Sartono, Bagus
    Schoen, Eric
    Goos, Peter
    [J]. TECHNOMETRICS, 2015, 57 (03) : 428 - 439
  • [5] Construction of Polygonal Designs Using Linear Integer Programming
    Mandal, B. N.
    Gupta, V. K.
    Parsad, Rajender
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (10) : 1787 - 1794
  • [6] Code generation for a DNA computer by integer linear programming
    Abe, S
    Hagiya, M
    Nakajima, T
    [J]. 2004 IEEE CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2004, : 268 - 273
  • [7] Combining variable neighborhood search with integer linear programming for the generalized minimum spanning tree problem
    Hu, Bin
    Leitner, Markus
    Raidl, Guenther R.
    [J]. JOURNAL OF HEURISTICS, 2008, 14 (05) : 473 - 499
  • [8] Combining variable neighborhood search with integer linear programming for the generalized minimum spanning tree problem
    Bin Hu
    Markus Leitner
    Günther R. Raidl
    [J]. Journal of Heuristics, 2008, 14 : 473 - 499
  • [9] Exact Clustering via Integer Programming and Maximum Satisfiability
    Miyauchi, Atsushi
    Sonobe, Tomohiro
    Sukegawa, Noriyoshi
    [J]. THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 1387 - 1394
  • [10] Efficient incomplete block designs through linear integer programming
    Mandal, B.N.
    Gupta, V.K.
    Parsad, R.
    [J]. American Journal of Mathematical and Management Sciences, 2014, 33 (02) : 110 - 124