An analysis of temperature data by using scalar component models

被引:0
|
作者
Kasap, R [1 ]
机构
[1] Gazi Univ, Fac Arts & Sci, Dept Stat, TR-06500 Ankara, Turkey
关键词
multivariate time series process; canonical correlation analysis; autoregressive moving average; (ARMA) models; scalar component model (SCM); model specification;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the study of multivariate processes, a framework is needed for describing not only the properties of individual series, but also the possible cross-relationship among the series. For this purpose, the method of canonical correlation analysis is used for treatment of multivariate time series which results in scalar component models (SCMs) already given by Tiao and Tsay (1989, Journal of Business and Economic Statistics, 1, 43-56). For the application of this methodology, temperature data are used which led to some useful empirical results. Copyright (C) 1999 John Wiley & Sons, Ltd.
引用
收藏
页码:625 / 631
页数:7
相关论文
共 50 条
  • [21] Risk prediction models for dementia constructed by supervised principal component analysis using miRNA expression data
    Daichi Shigemizu
    Shintaro Akiyama
    Yuya Asanomi
    Keith A. Boroevich
    Alok Sharma
    Tatsuhiko Tsunoda
    Kana Matsukuma
    Makiko Ichikawa
    Hiroko Sudo
    Satoko Takizawa
    Takashi Sakurai
    Kouichi Ozaki
    Takahiro Ochiya
    Shumpei Niida
    Communications Biology, 2
  • [22] Risk prediction models for dementia constructed by supervised principal component analysis using miRNA expression data
    Shigemizu, Daichi
    Akiyama, Shintaro
    Asanomi, Yuya
    Boroevich, Keith A.
    Sharma, Alok
    Tsunoda, Tatsuhiko
    Matsukuma, Kana
    Ichikawa, Makiko
    Sudo, Hiroko
    Takizawa, Satoko
    Sakurai, Takashi
    Ozaki, Kouichi
    Ochiya, Takahiro
    Niida, Shumpei
    COMMUNICATIONS BIOLOGY, 2019, 2
  • [23] A platform for Kirchhoff data mapping in scalar models of data acquisition
    Bleistein, N
    Jaramillo, H
    GEOPHYSICAL PROSPECTING, 2000, 48 (01) : 135 - 161
  • [24] HIGH-TEMPERATURE SERIES FOR SCALAR-FIELD LATTICE MODELS - GENERATION AND ANALYSIS
    NICKEL, BG
    REHR, JJ
    JOURNAL OF STATISTICAL PHYSICS, 1990, 61 (1-2) : 1 - 50
  • [25] Autoignition temperature: comprehensive data analysis and predictive models
    Baskin, I. I.
    Lozano, S.
    Durot, M.
    Marcou, G.
    Horvath, D.
    Varnek, A.
    SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2020, 31 (08) : 597 - 613
  • [26] The development of calibration models for spectroscopic data using principal component regression
    De Maesschalck, R
    Estienne, F
    Verdú-Andrés, J
    Candolfi, A
    Centner, V
    Despagne, F
    Jouan-Rimbaud, D
    Walczak, B
    Massart, DL
    de Jong, S
    de Noord, OE
    Puel, C
    Vandeginste, BMG
    INTERNET JOURNAL OF CHEMISTRY, 1999, 2 (19):
  • [27] Classification of cytometry data using principal component analysis
    Venkatapathi, M
    Rajwa, B
    Gregori, GJ
    Hirleman, ED
    Robinson, JP
    CYTOMETRY PART A, 2004, 59A (01): : 88 - 88
  • [28] Using independent component analysis to process magnetotelluric data
    Cui Jinling
    Deng Ming
    Jing Jian'en
    Wang Enci
    PROGRESS IN ENVIRONMENTAL PROTECTION AND PROCESSING OF RESOURCE, PTS 1-4, 2013, 295-298 : 2795 - 2798
  • [29] Weather data mining using independent component analysis
    Basak, J
    Sudarshan, A
    Trivedi, D
    Santhanam, MS
    JOURNAL OF MACHINE LEARNING RESEARCH, 2004, 5 : 239 - 253
  • [30] Covariance component models for multivariate binary traits in family data analysis
    Yip, Benjamin H.
    Bjork, Camilla
    Lichtenstein, Paul
    Hultman, Christina M.
    Pawitan, Yudi
    STATISTICS IN MEDICINE, 2008, 27 (07) : 1086 - 1105