An analysis of temperature data by using scalar component models

被引:0
|
作者
Kasap, R [1 ]
机构
[1] Gazi Univ, Fac Arts & Sci, Dept Stat, TR-06500 Ankara, Turkey
关键词
multivariate time series process; canonical correlation analysis; autoregressive moving average; (ARMA) models; scalar component model (SCM); model specification;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the study of multivariate processes, a framework is needed for describing not only the properties of individual series, but also the possible cross-relationship among the series. For this purpose, the method of canonical correlation analysis is used for treatment of multivariate time series which results in scalar component models (SCMs) already given by Tiao and Tsay (1989, Journal of Business and Economic Statistics, 1, 43-56). For the application of this methodology, temperature data are used which led to some useful empirical results. Copyright (C) 1999 John Wiley & Sons, Ltd.
引用
收藏
页码:625 / 631
页数:7
相关论文
共 50 条
  • [1] A note on the initial identification of scalar component models
    Celina Pestano-Gabino
    Concepción González-Concepción
    María Candelaria Gil-Fariña
    Numerical Algorithms, 2011, 58 : 439 - 449
  • [2] A note on the initial identification of scalar component models
    Pestano-Gabino, Celina
    Gonzalez-Concepcion, Concepcion
    Gil-Farina, Maria Candelaria
    NUMERICAL ALGORITHMS, 2011, 58 (03) : 439 - 449
  • [3] Data Analysis Using Principal Component Analysis
    Sehgal, Shrub
    Singh, Harpreet
    Agarwal, Mohit
    Bhasker, V.
    Shantanu
    2014 INTERNATIONAL CONFERENCE ON MEDICAL IMAGING, M-HEALTH & EMERGING COMMUNICATION SYSTEMS (MEDCOM), 2015, : 45 - 48
  • [4] Reconfiguration analysis using generic component models
    Gehin, Anne-Lise
    Staroswiecki, Marcel
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2008, 38 (03): : 575 - 583
  • [5] Independent component analysis using pots models
    Wu, JM
    Chiu, SJ
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (02): : 202 - 211
  • [6] Sure overall orders to identify scalar component models
    Pestano-Gabino, Celina
    González-Concepción, Concepción
    Gil-Fariña, María Candelaria
    WSEAS Transactions on Mathematics, 2006, 5 (01) : 97 - 102
  • [7] Mixture models for analysis of melting temperature data
    Christoffer Nellåker
    Fredrik Uhrzander
    Joanna Tyrcha
    Håkan Karlsson
    BMC Bioinformatics, 9
  • [8] Mixture models for analysis of melting temperature data
    Nellaker, Christoffer
    Uhrzander, Fredrik
    Tyrcha, Joanna
    Karlsson, Hakan
    BMC BIOINFORMATICS, 2008, 9 (1)
  • [9] Empirical Bayes analysis of variance component models for microarray data
    S. Feng
    R. D. Wolfinger
    T. M. Chu
    G. C. Gibson
    L. A. McGraw
    Journal of Agricultural, Biological, and Environmental Statistics, 2006, 11
  • [10] Visualizing probabilistic models and data with Intensive Principal Component Analysis
    Quinn, Katherine N.
    Clement, Colin B.
    De Bernardis, Francesco
    Niemack, Michael D.
    Sethna, James P.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (28) : 13762 - 13767