Syntactic complexity of suffix-free languages

被引:0
|
作者
Brzozowski, Janusz A. [1 ]
Szykula, Marek [2 ]
机构
[1] Univ Waterloo, David R Cheriton Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
[2] Univ Wroclaw, Inst Comp Sci, Joliot Curie 15, PL-50383 Wroclaw, Poland
基金
加拿大自然科学与工程研究理事会;
关键词
Regular language; Suffix-free; Syntactic complexity; Transition semigroup; Upper bound; FREE REGULAR LANGUAGES; STATE COMPLEXITY;
D O I
10.1016/j.ic.2017.08.014
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We solve an open problem concerning syntactic complexity: We prove that the cardinality of the syntactic semigroup of a suffix-free language with n left quotients (that is, with state complexity n) is at most (n - 1)(n-2) + n - 2 for n >= 6. Since this bound is known to be reachable, this settles the problem. We also reduce the alphabet of the witness languages reaching this bound to five letters instead of n + 2, and show that it cannot be any smaller. Finally, we prove that the transition semigroup of a minimal deterministic automaton accepting a witness language is unique for each n. (c) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:174 / 190
页数:17
相关论文
共 50 条
  • [21] SUFFIX LANGUAGES IN LR PARSING
    SEYFARTH, BR
    BERMUDEZ, ME
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1995, 55 (3-4) : 135 - 153
  • [22] Syntactic Complexities of Some Classes of Star-Free Languages
    Brzozowski, Janusz
    Li, Baiyu
    DESCRIPTIONAL COMPLEXITY OF FORMAL SYSTEMS, DCFS 2012, 2012, 7386 : 117 - 129
  • [23] Complexity in Union-Free Regular Languages
    Jiraskova, Galina
    Masopust, Tomas
    DEVELOPMENTS IN LANGUAGE THEORY, 2010, 6224 : 255 - +
  • [24] STRUCTURAL COMPLEXITY OF CONTEXT-FREE LANGUAGES
    KOBAYASHI, K
    INFORMATION AND CONTROL, 1971, 18 (04): : 299 - +
  • [25] COMPLEXITY OF GRAMMATICAL DESCRIPTION OF CONTEXTUALLY FREE LANGUAGES
    ILYUSHKI.VA
    DOKLADY AKADEMII NAUK SSSR, 1972, 203 (06): : 1244 - &
  • [26] Complexity of bifix-free regular languages
    Ferens, Robert
    Szykula, Marek
    THEORETICAL COMPUTER SCIENCE, 2019, 787 : 14 - 27
  • [27] Complexity in Prefix-Free Regular Languages
    Jiraskova, Galina
    Krausova, Monika
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2010, (31): : 197 - 204
  • [28] CONTEXT-FREE COMPLEXITY OF FINITE LANGUAGES
    BUCHER, W
    MAURER, HA
    CULIK, K
    THEORETICAL COMPUTER SCIENCE, 1984, 28 (03) : 277 - 285
  • [29] COMPLEXITY IN UNION-FREE REGULAR LANGUAGES
    Jiraskova, Galina
    Masopust, Tomas
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2011, 22 (07) : 1639 - 1653
  • [30] QUOTIENT COMPLEXITY OF STAR-FREE LANGUAGES
    Brzozowski, Janusz
    Liu, Bo
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2012, 23 (06) : 1261 - 1276