Exponentially convergent data assimilation algorithm for Navier-Stokes equations

被引:0
|
作者
Zhuk, Sergiy [1 ]
Tchrakian, Tigran T. [1 ]
Frank, Jason [2 ]
机构
[1] IBM Res, Dublin, Ireland
[2] Univ Utrecht, Utrecht, Netherlands
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper presents a new state estimation algorithm for a bilinear equation representing the Fourier-Galerkin (FG) approximation of the Navier-tokes (NS) equations on a torus in R-2. This state equation is subject to uncertain but bounded noise in the input (Kolmogorov forcing) and initial conditions, and its output is incomplete and contains bounded noise. The algorithm designs a time-dependent gain such that the estimation error converges to zero exponentially. The sufficient condition for the existence of the gain are formulated in the form of algebraic Riccati equations. To demonstrate the results we apply the proposed algorithm to the reconstruction a chaotic fluid flow from incomplete and noisy data.
引用
收藏
页码:3249 / 3256
页数:8
相关论文
共 50 条
  • [1] A RAPIDLY CONVERGENT ALGORITHM FOR THE SOLUTION OF NAVIER-STOKES EQUATIONS
    Krizmanic, Severino
    Virag, Zdravko
    Savar, Mario
    11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS V - VI, 2014, : 5115 - 5121
  • [2] Downscaling data assimilation algorithm with applications to statistical solutions of the Navier-Stokes equations
    Biswas, Animikh
    Foias, Ciprian
    Mondaini, Cecilia F.
    Titi, Edriss S.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (02): : 295 - 326
  • [3] A Computational Study of a Data Assimilation Algorithm for the Two-dimensional Navier-Stokes Equations
    Gesho, Masakazu
    Olson, Eric
    Titi, Edriss S.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 19 (04) : 1094 - 1110
  • [4] A Variational Data Assimilation Procedure for the Incompressible Navier-Stokes Equations in Hemodynamics
    D'Elia, Marta
    Perego, Mauro
    Veneziani, Alessandro
    JOURNAL OF SCIENTIFIC COMPUTING, 2012, 52 (02) : 340 - 359
  • [5] A Variational Data Assimilation Procedure for the Incompressible Navier-Stokes Equations in Hemodynamics
    Marta D’Elia
    Mauro Perego
    Alessandro Veneziani
    Journal of Scientific Computing, 2012, 52 : 340 - 359
  • [6] Data Assimilation for the Navier-Stokes Equations Using Local Observables\ast
    Biswas, Animikh
    Bradshaw, Zachary
    Jolly, Michael S.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2021, 20 (04): : 2174 - 2203
  • [7] CONTINUOUS DATA ASSIMILATION FOR THE THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS
    Biswas, Animikh
    Price, Randy
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (06) : 6697 - 6723
  • [8] An accelerated algorithm for Navier-Stokes equations
    Venturin, M.
    Bertelle, R.
    Russo, M. R.
    SIMULATION MODELLING PRACTICE AND THEORY, 2010, 18 (02) : 217 - 229
  • [9] Higher-order synchronization for a data assimilation algorithm for the 2D Navier-Stokes equations
    Biswas, Animikh
    Martinez, Vincent R.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 35 : 132 - 157
  • [10] Synchronization to Big Data: Nudging the Navier-Stokes Equations for Data Assimilation of Turbulent Flows
    Di Leoni, Patricio Clark
    Mazzino, Andrea
    Biferale, Luca
    PHYSICAL REVIEW X, 2020, 10 (01)