Physical Attack on Monocular Depth Estimation with Optimal Adversarial Patches

被引:48
|
作者
Cheng, Zhiyuan [1 ]
Liang, James [2 ]
Choi, Hongjun [1 ]
Tao, Guanhong [1 ]
Cao, Zhiwen [1 ]
Liu, Dongfang [2 ]
Zhang, Xiangyu [1 ]
机构
[1] Purdue Univ, W Lafayette, IN 47907 USA
[2] Rochester Inst Technol, Rochester, NY 14623 USA
来源
关键词
Physical adversarial attack; Monocular depth estimation; Autonomous driving;
D O I
10.1007/978-3-031-19839-7_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning has substantially boosted the performance of Monocular Depth Estimation (MDE), a critical component in fully vision-based autonomous driving (AD) systems (e.g., Tesla and Toyota). In this work, we develop an attack against learning-based MDE. In particular, we use an optimization-based method to systematically generate stealthy physical-object-oriented adversarial patches to attack depth estimation. We balance the stealth and effectiveness of our attack with object-oriented adversarial design, sensitive region localization, and natural style camouflage. Using real-world driving scenarios, we evaluate our attack on concurrent MDE models and a representative downstream task for AD (i.e., 3D object detection). Experimental results show that our method can generate stealthy, effective, and robust adversarial patches for different target objects and models and achieves more than 6m mean depth estimation error and 93% attack success rate (ASR) in object detection with a patch of 1/9 of the vehicle's rear area. Field tests on three different driving routes with a real vehicle indicate that we cause over 6m mean depth estimation error and reduce the object detection rate from 90.70% to 5.16% in continuous video frames.
引用
收藏
页码:514 / 532
页数:19
相关论文
共 50 条
  • [31] DepthNet: A Monocular Depth Estimation Framework
    Anunay
    Pankaj
    Dhiman, Chhavi
    2021 7TH INTERNATIONAL CONFERENCE ON ENGINEERING AND EMERGING TECHNOLOGIES (ICEET 2021), 2021, : 495 - 500
  • [32] Monocular depth estimation with enhanced edge
    Wang Q.
    Wang Q.
    Cheng K.
    Liu Z.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50 (03): : 36 - 42
  • [33] Monocular Depth Estimation for Equirectangular Videos
    Fraser, Helmi
    Wang, Sen
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 5293 - 5299
  • [34] Monocular Depth Estimation Using Relative Depth Maps
    Lee, Jae-Han
    Kim, Chang-Su
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9721 - 9730
  • [35] Monocular Depth Estimation with Sharp Boundary
    Yang, Xin
    Chang, Qingling
    Xu, Shiting
    Liu, Xinlin
    Cui, Yan
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 136 (01): : 573 - 592
  • [36] Aperture Supervision for Monocular Depth Estimation
    Srinivasan, Pratul P.
    Garg, Rahul
    Wadhwa, Neal
    Ng, Ren
    Barron, Jonathan T.
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 6393 - 6401
  • [37] Monocular Depth Estimation for Mobile Device
    Lee, Yongsik
    Lee, Seungjae
    Ko, Jong Gook
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-ASIA (ICCE-ASIA), 2021,
  • [38] Geometric Pretraining for Monocular Depth Estimation
    Wang, Kaixuan
    Chen, Yao
    Guo, Hengkai
    Wen, Linfu
    Shen, Shaojie
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 4782 - 4788
  • [39] Monocular Depth Estimation With Augmented Ordinal Depth Relationships
    Cao, Yuanzhouhan
    Zhao, Tianqi
    Xian, Ke
    Shen, Chunhua
    Cao, Zhiguo
    Xu, Shugong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (08) : 2674 - 2682
  • [40] Monocular depth estimation with SPN loss
    Mathew, Alwyn
    Mathew, Jimson
    IMAGE AND VISION COMPUTING, 2020, 100